File size: 22,948 Bytes
8499c35 3738236 a0aab75 c3f5a2a 7ef5456 8499c35 1172ae8 8499c35 35a0403 77b71a6 be67fcf 8d7b496 d401ad6 6155281 0566fd9 a0ade06 a0aab75 08e6e30 b3f5eda 8e2eef3 3e9b436 f1e7785 805e19a b3f5eda 3e9b436 08e6e30 6155281 8499c35 6155281 8499c35 0be8860 8d6cc8d cedea8d b3f5eda 63f91c1 74f896e 92672ef 770e1bd 8499c35 63f91c1 8499c35 cac7541 b7ef881 7e12771 bfef940 8499c35 1487c65 377fd6b a5008d2 47afd47 1487c65 47afd47 92672ef 4070bba 92672ef 74f896e 14eaae6 93cff1c 136e24e 92672ef 136e24e 47afd47 14eaae6 47afd47 14eaae6 47afd47 14eaae6 faf79c5 4572bc8 a5008d2 4070bba 14eaae6 4070bba 7ef5456 4070bba 93cff1c 7ef5456 4070bba 14eaae6 4070bba 14eaae6 4070bba 14eaae6 4070bba 770e1bd 47afd47 63f91c1 47afd47 1ad3fab 47afd47 8499c35 47afd47 8e2eef3 47afd47 63f91c1 47afd47 08e6e30 770e1bd 45412ff 17828cf b1b5065 17828cf e6fd33c b1b5065 17828cf b1b5065 17828cf b1b5065 e85d7fc b1b5065 1c1d7c0 17828cf 42a3a84 17828cf 42a3a84 45412ff 42a3a84 17828cf b1b5065 7a5728d 770e1bd 93ef2af cac7541 6a1d689 93ef2af 47afd47 edd60a3 770e1bd 8499c35 040ddf0 8499c35 47afd47 770e1bd 8499c35 edd60a3 770e1bd 8499c35 c2ce126 8499c35 770e1bd 8499c35 47afd47 8610297 47afd47 c25ef02 2a35885 c25ef02 47afd47 3e3cd53 47afd47 b9ab57e 47afd47 db7f66b 3e3cd53 db7f66b 3b92b2a db7f66b 3d4bc90 47afd47 822959f c25ef02 721935c 4847fdb 47afd47 b3f5eda 47afd47 b3f5eda 47afd47 b3f5eda 47afd47 b3f5eda 47afd47 805e19a b3f5eda 47afd47 b3f5eda 47afd47 b3f5eda 47afd47 8499c35 edd60a3 8499c35 edd60a3 e512522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
import whisper
import os
import random
import openai
import yt_dlp
from pytube import YouTube, extract
import pandas as pd
import plotly_express as px
import nltk
import plotly.graph_objects as go
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import streamlit as st
import en_core_web_lg
import validators
import re
import itertools
import numpy as np
from bs4 import BeautifulSoup
import base64, time
from annotated_text import annotated_text
import pickle, math
import wikipedia
from pyvis.network import Network
import torch
from pydub import AudioSegment
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.chains import QAGenerationChain
from langchain.callbacks import StreamlitCallbackHandler
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
AgentTokenBufferMemory,
)
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.prompts import PromptTemplate
nltk.download('punkt')
from nltk import sent_tokenize
OPEN_AI_KEY = os.environ.get('OPEN_AI_KEY')
time_str = time.strftime("%d%m%Y-%H%M%S")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
###################### Functions #######################################################################################
#load all required models and cache
@st.cache_resource
def load_models():
'''Load and cache all the models to be used'''
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
sum_pipe = pipeline("summarization",model="philschmid/flan-t5-base-samsum",clean_up_tokenization_spaces=True)
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') #cross-encoder/ms-marco-MiniLM-L-12-v2
sbert = SentenceTransformer('all-MiniLM-L6-v2')
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert
@st.cache_data
def load_asr_model(model_name):
'''Load the open source whisper model in cases where the API is not working'''
model = whisper.load_model(model_name)
return model
@st.cache_resource
def get_spacy():
nlp = en_core_web_lg.load()
return nlp
nlp = get_spacy()
sent_pipe, sum_pipe, ner_pipe, cross_encoder, sbert = load_models()
@st.cache_data
def get_yt_audio(url):
'''Get YT video from given URL link'''
yt = YouTube(url)
title = yt.title
# Get the first available audio stream and download it
audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
return audio_stream, title
@st.cache_data
def get_yt_audio_dl(url):
'''Back up for when pytube is down'''
temp_audio_file = os.path.join('output', 'audio')
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': temp_audio_file,
'quiet': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=False)
title = info.get('title', None)
ydl.download([url])
#with open(temp_audio_file+'.mp3', 'rb') as file:
audio_file = os.path.join('output', 'audio.mp3')
return audio_file, title
@st.cache_data
def load_whisper_api(audio):
'''Transcribe YT audio to text using Open AI API'''
file = open(audio, "rb")
transcript = openai.Audio.translate("whisper-1", file)
return transcript
@st.cache_data
def transcribe_yt_video(url, py_tube=True):
'''Transcribe YouTube video'''
if py_tube:
audio_file, title = get_yt_audio(link)
print(f'audio_file:{audio_file}')
st.session_state['audio'] = audio_file
print(f"audio_file_session_state:{st.session_state['audio'] }")
#Get size of audio file
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
#Check if file is > 24mb, if not then use Whisper API
if audio_size <= 25:
st.info("`Transcribing YT audio...`")
#Use whisper API
results = load_whisper_api(st.session_state['audio'])['text']
else:
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
song = AudioSegment.from_file(st.session_state['audio'], format='mp4')
# PyDub handles time in milliseconds
twenty_minutes = 20 * 60 * 1000
chunks = song[::twenty_minutes]
transcriptions = []
video_id = extract.video_id(link)
for i, chunk in enumerate(chunks):
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4')
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text'])
results = ','.join(transcriptions)
else:
audio_file, title = get_yt_audio_dl(link)
print(f'audio_file:{audio_file}')
st.session_state['audio'] = audio_file
print(f"audio_file_session_state:{st.session_state['audio'] }")
#Get size of audio file
audio_size = round(os.path.getsize(st.session_state['audio'])/(1024*1024),1)
#Check if file is > 24mb, if not then use Whisper API
if audio_size <= 25:
st.info("`Transcribing YT audio...`")
#Use whisper API
results = load_whisper_api(st.session_state['audio'])['text']
else:
st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
song = AudioSegment.from_file(st.session_state['audio'], format='mp4')
# PyDub handles time in milliseconds
twenty_minutes = 20 * 60 * 1000
chunks = song[::twenty_minutes]
transcriptions = []
video_id = extract.video_id(link)
for i, chunk in enumerate(chunks):
chunk.export(f'output/chunk_{i}_{video_id}.mp4', format='mp4')
transcriptions.append(load_whisper_api(f'output/chunk_{i}_{video_id}.mp4')['text'])
results = ','.join(transcriptions)
st.info("`YT Video transcription process complete...`")
return results, title
@st.cache_data
def inference(link, upload):
'''Convert Youtube video or Audio upload to text'''
try:
if validators.url(link):
st.info("`Downloading YT audio...`")
results, title = transcribe_yt_video(link)
return results, title
elif _upload:
#Get size of audio file
audio_size = round(os.path.getsize(_upload)/(1024*1024),1)
#Check if file is > 24mb, if not then use Whisper API
if audio_size <= 25:
st.info("`Transcribing uploaded audio...`")
#Use whisper API
results = load_whisper_api(_upload)['text']
else:
st.write('File size larger than 24mb, applying chunking and transcription')
song = AudioSegment.from_file(_upload)
# PyDub handles time in milliseconds
twenty_minutes = 20 * 60 * 1000
chunks = song[::twenty_minutes]
transcriptions = []
st.info("`Transcribing uploaded audio...`")
for i, chunk in enumerate(chunks):
chunk.export(f'output/chunk_{i}.mp4', format='mp4')
transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp4')['text'])
results = ','.join(transcriptions)
st.info("`Uploaded audio transcription process complete...`")
return results, "Transcribed Earnings Audio"
except Exception as e:
st.error(f'''PyTube Error: {e},
Using yt_dlp module, might take longer than expected''',icon="🚨")
results, title = transcribe_yt_video(link, py_tube=False)
# results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
return results, title
@st.cache_data
def clean_text(text):
'''Clean all text after inference'''
text = text.encode("ascii", "ignore").decode() # unicode
text = re.sub(r"https*\S+", " ", text) # url
text = re.sub(r"@\S+", " ", text) # mentions
text = re.sub(r"#\S+", " ", text) # hastags
text = re.sub(r"\s{2,}", " ", text) # over spaces
return text
@st.cache_data
def chunk_long_text(text,threshold,window_size=3,stride=2):
'''Preprocess text and chunk for sentiment analysis'''
#Convert cleaned text into sentences
sentences = sent_tokenize(text)
out = []
#Limit the length of each sentence to a threshold
for chunk in sentences:
if len(chunk.split()) < threshold:
out.append(chunk)
else:
words = chunk.split()
num = int(len(words)/threshold)
for i in range(0,num*threshold+1,threshold):
out.append(' '.join(words[i:threshold+i]))
passages = []
#Combine sentences into a window of size window_size
for paragraph in [out]:
for start_idx in range(0, len(paragraph), stride):
end_idx = min(start_idx+window_size, len(paragraph))
passages.append(" ".join(paragraph[start_idx:end_idx]))
return passages
@st.cache_data
def sentiment_pipe(earnings_text):
'''Determine the sentiment of the text'''
earnings_sentences = chunk_long_text(earnings_text,150,1,1)
earnings_sentiment = sent_pipe(earnings_sentences)
return earnings_sentiment, earnings_sentences
@st.cache_data
def chunk_and_preprocess_text(text, model_name= 'philschmid/flan-t5-base-samsum'):
'''Chunk and preprocess text for summarization'''
tokenizer = AutoTokenizer.from_pretrained(model_name)
sentences = sent_tokenize(text)
# initialize
length = 0
chunk = ""
chunks = []
count = -1
for sentence in sentences:
count += 1
combined_length = len(tokenizer.tokenize(sentence)) + length # add the no. of sentence tokens to the length counter
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
chunk += sentence + " " # add the sentence to the chunk
length = combined_length # update the length counter
# if it is the last sentence
if count == len(sentences) - 1:
chunks.append(chunk) # save the chunk
else:
chunks.append(chunk) # save the chunk
# reset
length = 0
chunk = ""
# take care of the overflow sentence
chunk += sentence + " "
length = len(tokenizer.tokenize(sentence))
return chunks
@st.cache_data
def summarize_text(text_to_summarize,max_len,min_len):
'''Summarize text with HF model'''
summarized_text = sum_pipe(text_to_summarize,
max_length=max_len,
min_length=min_len,
do_sample=False,
early_stopping=True,
num_beams=4)
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
return summarized_text
@st.cache_data
def get_all_entities_per_sentence(text):
doc = nlp(''.join(text))
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# XLM ENTITIES
entities_xlm = [entity["word"] for entity in ner_pipe(str(sentence))]
for entity in entities_xlm:
entities_this_sentence.append(str(entity))
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
@st.cache_data
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
@st.cache_data
def get_and_compare_entities(article_content,summary_output):
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
all_entities_per_sentence = get_all_entities_per_sentence(summary_output)
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
elif any(
np.inner(sbert.encode(entity, show_progress_bar=False),
sbert.encode(art_entity, show_progress_bar=False)) > 0.9 for
art_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
matched_entities = list(dict.fromkeys(matched_entities))
unmatched_entities = list(dict.fromkeys(unmatched_entities))
matched_entities_to_remove = []
unmatched_entities_to_remove = []
for entity in matched_entities:
for substring_entity in matched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
matched_entities_to_remove.append(entity)
for entity in unmatched_entities:
for substring_entity in unmatched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
unmatched_entities_to_remove.append(entity)
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove))
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove))
for entity in matched_entities_to_remove:
matched_entities.remove(entity)
for entity in unmatched_entities_to_remove:
unmatched_entities.remove(entity)
return matched_entities, unmatched_entities
@st.cache_data
def highlight_entities(article_content,summary_output):
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
markdown_end = "</mark>"
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output)
for entity in matched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output)
for entity in unmatched_entities:
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output)
print("")
print("")
soup = BeautifulSoup(summary_output, features="html.parser")
return HTML_WRAPPER.format(soup)
def summary_downloader(raw_text):
'''Download the summary generated'''
b64 = base64.b64encode(raw_text.encode()).decode()
new_filename = "new_text_file_{}_.txt".format(time_str)
st.markdown("#### Download Summary as a File ###")
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
st.markdown(href,unsafe_allow_html=True)
@st.cache_data
def generate_eval(raw_text, N, chunk):
# Generate N questions from context of chunk chars
# IN: text, N questions, chunk size to draw question from in the doc
# OUT: eval set as JSON list
# raw_text = ','.join(raw_text)
update = st.empty()
ques_update = st.empty()
update.info("`Generating sample questions ...`")
n = len(raw_text)
starting_indices = [random.randint(0, n-chunk) for _ in range(N)]
sub_sequences = [raw_text[i:i+chunk] for i in starting_indices]
chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
eval_set = []
for i, b in enumerate(sub_sequences):
try:
qa = chain.run(b)
eval_set.append(qa)
ques_update.info(f"Creating Question: {i+1}")
except Exception as e:
print(e)
st.warning(f'Error in generating Question: {i+1}...', icon="⚠️")
continue
eval_set_full = list(itertools.chain.from_iterable(eval_set))
update.empty()
ques_update.empty()
return eval_set_full
@st.cache_resource
def create_prompt_and_llm():
'''Create prompt'''
llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-4")
message = SystemMessage(
content=(
"You are a helpful chatbot who is tasked with answering questions acuurately about earnings call transcript provided. "
"Unless otherwise explicitly stated, it is probably fair to assume that questions are about the earnings call transcript. "
"If there is any ambiguity, you probably assume they are about that."
"Do not use any information not provided in the earnings context and remember you are a to speak like a finance expert."
"If you don't know the answer, just say 'There is no relevant answer in the given earnings call transcript'"
"don't try to make up an answer"
)
)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=message,
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
return prompt, llm
@st.cache_resource
def gen_embeddings(embedding_model):
'''Generate embeddings for given model'''
if 'hkunlp' in embedding_model:
embeddings = HuggingFaceInstructEmbeddings(model_name=embedding_model,
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
embed_instruction='Represent the Financial paragraph for retrieval: ')
elif 'mpnet' in embedding_model:
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
elif 'FlagEmbedding' in embedding_model:
encode_kwargs = {'normalize_embeddings': True}
embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model,
encode_kwargs = encode_kwargs
)
return embeddings
@st.cache_data
def create_vectorstore(corpus, title, embedding_model, chunk_size=1000, overlap=50):
'''Process text for Semantic Search'''
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=overlap)
texts = text_splitter.split_text(corpus)
embeddings = gen_embeddings(embedding_model)
vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
return vectorstore
@st.cache_data
def create_memory_and_agent(query,_docsearch):
'''Embed text and generate semantic search scores'''
#create vectorstore
vectorstore = _docsearch.as_retriever(search_kwargs={"k": 4})
#create retriever tool
tool = create_retriever_tool(
vectorstore,
"earnings_call_search",
"Searches and returns documents using the earnings context provided as a source, relevant to the user input question.",
)
tools = [tool]
prompt,llm = create_prompt_and_llm()
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
return_intermediate_steps=True,
)
memory = AgentTokenBufferMemory(llm=llm)
return memory, agent_executor
@st.cache_data
def gen_sentiment(text):
'''Generate sentiment of given text'''
return sent_pipe(text)[0]['label']
@st.cache_data
def gen_annotated_text(df):
'''Generate annotated text'''
tag_list=[]
for row in df.itertuples():
label = row[2]
text = row[1]
if label == 'Positive':
tag_list.append((text,label,'#8fce00'))
elif label == 'Negative':
tag_list.append((text,label,'#f44336'))
else:
tag_list.append((text,label,'#000000'))
return tag_list
def display_df_as_table(model,top_k,score='score'):
'''Display the df with text and scores as a table'''
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
df['Score'] = round(df['Score'],2)
return df
def make_spans(text,results):
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
facts_spans = []
facts_spans = list(zip(sent_tokenizer(text),results_list))
return facts_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
results = remote_clx(sent_tokenizer(text))
return make_spans(text,results)
## Knowledge Graphs code
def get_article(url):
article = Article(url)
article.download()
article.parse()
return article
|