nickmuchi commited on
Commit
47afd47
·
1 Parent(s): 4070bba

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +179 -171
functions.py CHANGED
@@ -139,6 +139,15 @@ def load_models():
139
 
140
  return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert
141
 
 
 
 
 
 
 
 
 
 
142
  @st.cache_data
143
  def get_yt_audio(url):
144
 
@@ -161,6 +170,14 @@ def load_whisper_api(audio):
161
 
162
  return transcript
163
 
 
 
 
 
 
 
 
 
164
  def inference(link, upload, _asr_model):
165
  '''Convert Youtube video or Audio upload to text'''
166
 
@@ -257,19 +274,53 @@ def inference(link, upload, _asr_model):
257
  return results['text'], title
258
 
259
  @st.cache_data
260
- def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
 
261
 
262
- '''Process text for Semantic Search'''
 
 
 
 
263
 
264
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=overlap)
265
-
266
- texts = text_splitter.split_text(corpus)
267
 
268
- embeddings = gen_embeddings(embedding_model)
 
 
 
 
 
 
269
 
270
- vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271
 
272
- return vectorstore
 
 
 
 
 
 
 
273
 
274
  @st.cache_data
275
  def chunk_and_preprocess_text(text,thresh=500):
@@ -296,114 +347,6 @@ def chunk_and_preprocess_text(text,thresh=500):
296
  chunks[chunk_id] = " ".join(chunks[chunk_id])
297
 
298
  return chunks
299
-
300
- @st.cache_resource
301
- def gen_embeddings(embedding_model):
302
-
303
- '''Generate embeddings for given model'''
304
-
305
- if 'hkunlp' in embedding_model:
306
-
307
- embeddings = HuggingFaceInstructEmbeddings(model_name=embedding_model,
308
- query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
309
- embed_instruction='Represent the Financial paragraph for retrieval: ')
310
-
311
- else:
312
-
313
- embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
314
-
315
- return embeddings
316
-
317
- def embed_text(query,embedding_model,_docsearch):
318
-
319
- '''Embed text and generate semantic search scores'''
320
-
321
- # llm = OpenAI(temperature=0)
322
- chat_llm = ChatOpenAI(streaming=True,
323
- model_name = 'gpt-4',
324
- callbacks=[StdOutCallbackHandler()],
325
- verbose=True,
326
- temperature=0
327
- )
328
-
329
- # chain = RetrievalQA.from_chain_type(llm=chat_llm, chain_type="stuff",
330
- # retriever=_docsearch.as_retriever(),
331
- # return_source_documents=True)
332
-
333
- chain = ConversationalRetrievalChain.from_llm(chat_llm,
334
- retriever= _docsearch.as_retriever(search_kwargs={"k": 3}),
335
- get_chat_history=lambda h : h,
336
- memory = memory,
337
- return_source_documents=True)
338
-
339
- chain.combine_docs_chain.llm_chain.prompt.messages[0] = load_prompt()
340
-
341
- answer = chain({"question": query})
342
-
343
- return answer
344
-
345
- @st.cache_data
346
- def gen_sentiment(text):
347
- '''Generate sentiment of given text'''
348
- return sent_pipe(text)[0]['label']
349
-
350
- @st.cache_data
351
- def gen_annotated_text(df):
352
- '''Generate annotated text'''
353
-
354
- tag_list=[]
355
- for row in df.itertuples():
356
- label = row[2]
357
- text = row[1]
358
- if label == 'Positive':
359
- tag_list.append((text,label,'#8fce00'))
360
- elif label == 'Negative':
361
- tag_list.append((text,label,'#f44336'))
362
- else:
363
- tag_list.append((text,label,'#000000'))
364
-
365
- return tag_list
366
-
367
- @st.cache_data
368
- def generate_eval(raw_text, N, chunk):
369
-
370
- # Generate N questions from context of chunk chars
371
- # IN: text, N questions, chunk size to draw question from in the doc
372
- # OUT: eval set as JSON list
373
-
374
- # raw_text = ','.join(raw_text)
375
-
376
- st.info("`Generating sample questions ...`")
377
- n = len(raw_text)
378
- starting_indices = [random.randint(0, n-chunk) for _ in range(N)]
379
- sub_sequences = [raw_text[i:i+chunk] for i in starting_indices]
380
- chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
381
- eval_set = []
382
- for i, b in enumerate(sub_sequences):
383
- try:
384
- qa = chain.run(b)
385
- eval_set.append(qa)
386
- st.write("Creating Question:",i+1)
387
- except Exception as e:
388
- st.warning('Error generating question %s.' % str(i+1), icon="⚠️")
389
- #st.write(e)
390
- eval_set_full = list(itertools.chain.from_iterable(eval_set))
391
- return eval_set_full
392
-
393
- @st.cache_resource
394
- def get_spacy():
395
- nlp = en_core_web_lg.load()
396
- return nlp
397
-
398
-
399
- @st.cache_data
400
- def sentiment_pipe(earnings_text):
401
- '''Determine the sentiment of the text'''
402
-
403
- earnings_sentences = chunk_long_text(earnings_text,150,1,1)
404
- earnings_sentiment = sent_pipe(earnings_sentences)
405
-
406
- return earnings_sentiment, earnings_sentences
407
 
408
  @st.cache_data
409
  def summarize_text(text_to_summarize,max_len,min_len):
@@ -416,56 +359,7 @@ def summarize_text(text_to_summarize,max_len,min_len):
416
  early_stopping=True)
417
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
418
 
419
- return summarized_text
420
-
421
- @st.cache_data
422
- def clean_text(text):
423
- '''Clean all text'''
424
-
425
- text = text.encode("ascii", "ignore").decode() # unicode
426
- text = re.sub(r"https*\S+", " ", text) # url
427
- text = re.sub(r"@\S+", " ", text) # mentions
428
- text = re.sub(r"#\S+", " ", text) # hastags
429
- text = re.sub(r"\s{2,}", " ", text) # over spaces
430
-
431
- return text
432
-
433
- @st.cache_data
434
- def chunk_long_text(text,threshold,window_size=3,stride=2):
435
- '''Preprocess text and chunk for sentiment analysis'''
436
-
437
- #Convert cleaned text into sentences
438
- sentences = sent_tokenize(text)
439
- out = []
440
-
441
- #Limit the length of each sentence to a threshold
442
- for chunk in sentences:
443
- if len(chunk.split()) < threshold:
444
- out.append(chunk)
445
- else:
446
- words = chunk.split()
447
- num = int(len(words)/threshold)
448
- for i in range(0,num*threshold+1,threshold):
449
- out.append(' '.join(words[i:threshold+i]))
450
-
451
- passages = []
452
-
453
- #Combine sentences into a window of size window_size
454
- for paragraph in [out]:
455
- for start_idx in range(0, len(paragraph), stride):
456
- end_idx = min(start_idx+window_size, len(paragraph))
457
- passages.append(" ".join(paragraph[start_idx:end_idx]))
458
-
459
- return passages
460
-
461
-
462
- def summary_downloader(raw_text):
463
-
464
- b64 = base64.b64encode(raw_text.encode()).decode()
465
- new_filename = "new_text_file_{}_.txt".format(time_str)
466
- st.markdown("#### Download Summary as a File ###")
467
- href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
468
- st.markdown(href,unsafe_allow_html=True)
469
 
470
  @st.cache_data
471
  def get_all_entities_per_sentence(text):
@@ -489,7 +383,7 @@ def get_all_entities_per_sentence(text):
489
  entities_all_sentences.append(entities_this_sentence)
490
 
491
  return entities_all_sentences
492
-
493
  @st.cache_data
494
  def get_all_entities(text):
495
  all_entities_per_sentence = get_all_entities_per_sentence(text)
@@ -569,6 +463,124 @@ def highlight_entities(article_content,summary_output):
569
  soup = BeautifulSoup(summary_output, features="html.parser")
570
 
571
  return HTML_WRAPPER.format(soup)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572
 
573
 
574
  def display_df_as_table(model,top_k,score='score'):
@@ -909,7 +921,3 @@ def save_network_html(kb, filename="network.html"):
909
  )
910
  net.set_edge_smooth('dynamic')
911
  net.show(filename)
912
-
913
- nlp = get_spacy()
914
-
915
- sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert = load_models()
 
139
 
140
  return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert
141
 
142
+ @st.cache_resource
143
+ def get_spacy():
144
+ nlp = en_core_web_lg.load()
145
+ return nlp
146
+
147
+ nlp = get_spacy()
148
+
149
+ sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert = load_models()
150
+
151
  @st.cache_data
152
  def get_yt_audio(url):
153
 
 
170
 
171
  return transcript
172
 
173
+ @st.cache_data
174
+ def load_asr_model(model_name):
175
+
176
+ '''Load the open source whisper model in cases where the API is not working'''
177
+ model = whisper.load_model(model_name)
178
+
179
+ return model
180
+
181
  def inference(link, upload, _asr_model):
182
  '''Convert Youtube video or Audio upload to text'''
183
 
 
274
  return results['text'], title
275
 
276
  @st.cache_data
277
+ def clean_text(text):
278
+ '''Clean all text after inference'''
279
 
280
+ text = text.encode("ascii", "ignore").decode() # unicode
281
+ text = re.sub(r"https*\S+", " ", text) # url
282
+ text = re.sub(r"@\S+", " ", text) # mentions
283
+ text = re.sub(r"#\S+", " ", text) # hastags
284
+ text = re.sub(r"\s{2,}", " ", text) # over spaces
285
 
286
+ return text
 
 
287
 
288
+ @st.cache_data
289
+ def chunk_long_text(text,threshold,window_size=3,stride=2):
290
+ '''Preprocess text and chunk for sentiment analysis'''
291
+
292
+ #Convert cleaned text into sentences
293
+ sentences = sent_tokenize(text)
294
+ out = []
295
 
296
+ #Limit the length of each sentence to a threshold
297
+ for chunk in sentences:
298
+ if len(chunk.split()) < threshold:
299
+ out.append(chunk)
300
+ else:
301
+ words = chunk.split()
302
+ num = int(len(words)/threshold)
303
+ for i in range(0,num*threshold+1,threshold):
304
+ out.append(' '.join(words[i:threshold+i]))
305
+
306
+ passages = []
307
+
308
+ #Combine sentences into a window of size window_size
309
+ for paragraph in [out]:
310
+ for start_idx in range(0, len(paragraph), stride):
311
+ end_idx = min(start_idx+window_size, len(paragraph))
312
+ passages.append(" ".join(paragraph[start_idx:end_idx]))
313
+
314
+ return passages
315
 
316
+ @st.cache_data
317
+ def sentiment_pipe(earnings_text):
318
+ '''Determine the sentiment of the text'''
319
+
320
+ earnings_sentences = chunk_long_text(earnings_text,150,1,1)
321
+ earnings_sentiment = sent_pipe(earnings_sentences)
322
+
323
+ return earnings_sentiment, earnings_sentences
324
 
325
  @st.cache_data
326
  def chunk_and_preprocess_text(text,thresh=500):
 
347
  chunks[chunk_id] = " ".join(chunks[chunk_id])
348
 
349
  return chunks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
 
351
  @st.cache_data
352
  def summarize_text(text_to_summarize,max_len,min_len):
 
359
  early_stopping=True)
360
  summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text])
361
 
362
+ return summarized_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
 
364
  @st.cache_data
365
  def get_all_entities_per_sentence(text):
 
383
  entities_all_sentences.append(entities_this_sentence)
384
 
385
  return entities_all_sentences
386
+
387
  @st.cache_data
388
  def get_all_entities(text):
389
  all_entities_per_sentence = get_all_entities_per_sentence(text)
 
463
  soup = BeautifulSoup(summary_output, features="html.parser")
464
 
465
  return HTML_WRAPPER.format(soup)
466
+
467
+ def summary_downloader(raw_text):
468
+
469
+ '''Download the summary generated'''
470
+
471
+ b64 = base64.b64encode(raw_text.encode()).decode()
472
+ new_filename = "new_text_file_{}_.txt".format(time_str)
473
+ st.markdown("#### Download Summary as a File ###")
474
+ href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
475
+ st.markdown(href,unsafe_allow_html=True)
476
+
477
+ @st.cache_data
478
+ def generate_eval(raw_text, N, chunk):
479
+
480
+ # Generate N questions from context of chunk chars
481
+ # IN: text, N questions, chunk size to draw question from in the doc
482
+ # OUT: eval set as JSON list
483
+
484
+ # raw_text = ','.join(raw_text)
485
+
486
+ st.info("`Generating sample questions ...`")
487
+ n = len(raw_text)
488
+ starting_indices = [random.randint(0, n-chunk) for _ in range(N)]
489
+ sub_sequences = [raw_text[i:i+chunk] for i in starting_indices]
490
+ chain = QAGenerationChain.from_llm(ChatOpenAI(temperature=0))
491
+ eval_set = []
492
+ for i, b in enumerate(sub_sequences):
493
+ try:
494
+ qa = chain.run(b)
495
+ eval_set.append(qa)
496
+ st.write("Creating Question:",i+1)
497
+ except Exception as e:
498
+ st.warning('Error generating question %s.' % str(i+1), icon="⚠️")
499
+ #st.write(e)
500
+ eval_set_full = list(itertools.chain.from_iterable(eval_set))
501
+ return eval_set_full
502
+
503
+ @st.cache_resource
504
+ def gen_embeddings(embedding_model):
505
+
506
+ '''Generate embeddings for given model'''
507
+
508
+ if 'hkunlp' in embedding_model:
509
+
510
+ embeddings = HuggingFaceInstructEmbeddings(model_name=embedding_model,
511
+ query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
512
+ embed_instruction='Represent the Financial paragraph for retrieval: ')
513
+
514
+ else:
515
+
516
+ embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
517
+
518
+ return embeddings
519
+
520
+ @st.cache_data
521
+ def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
522
+
523
+ '''Process text for Semantic Search'''
524
+
525
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,chunk_overlap=overlap)
526
+
527
+ texts = text_splitter.split_text(corpus)
528
+
529
+ embeddings = gen_embeddings(embedding_model)
530
+
531
+ vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
532
+
533
+ return vectorstore
534
+
535
+ def embed_text(query,_docsearch):
536
+
537
+ '''Embed text and generate semantic search scores'''
538
+
539
+ # llm = OpenAI(temperature=0)
540
+ chat_llm = ChatOpenAI(streaming=True,
541
+ model_name = 'gpt-4',
542
+ callbacks=[StdOutCallbackHandler()],
543
+ verbose=True,
544
+ temperature=0
545
+ )
546
+
547
+ # chain = RetrievalQA.from_chain_type(llm=chat_llm, chain_type="stuff",
548
+ # retriever=_docsearch.as_retriever(),
549
+ # return_source_documents=True)
550
+
551
+ chain = ConversationalRetrievalChain.from_llm(chat_llm,
552
+ retriever= _docsearch.as_retriever(search_kwargs={"k": 3}),
553
+ get_chat_history=lambda h : h,
554
+ memory = memory,
555
+ return_source_documents=True)
556
+
557
+ chain.combine_docs_chain.llm_chain.prompt.messages[0] = load_prompt()
558
+
559
+ answer = chain({"question": query})
560
+
561
+ return answer
562
+
563
+ @st.cache_data
564
+ def gen_sentiment(text):
565
+ '''Generate sentiment of given text'''
566
+ return sent_pipe(text)[0]['label']
567
+
568
+ @st.cache_data
569
+ def gen_annotated_text(df):
570
+ '''Generate annotated text'''
571
+
572
+ tag_list=[]
573
+ for row in df.itertuples():
574
+ label = row[2]
575
+ text = row[1]
576
+ if label == 'Positive':
577
+ tag_list.append((text,label,'#8fce00'))
578
+ elif label == 'Negative':
579
+ tag_list.append((text,label,'#f44336'))
580
+ else:
581
+ tag_list.append((text,label,'#000000'))
582
+
583
+ return tag_list
584
 
585
 
586
  def display_df_as_table(model,top_k,score='score'):
 
921
  )
922
  net.set_edge_smooth('dynamic')
923
  net.show(filename)