nickmuchi commited on
Commit
805e19a
·
1 Parent(s): 8940a11

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +3 -42
functions.py CHANGED
@@ -30,10 +30,7 @@ from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
30
  from langchain.vectorstores import FAISS
31
  from langchain.text_splitter import RecursiveCharacterTextSplitter
32
  from langchain.chat_models import ChatOpenAI
33
- from langchain.callbacks import StdOutCallbackHandler
34
- from langchain.chains import ConversationalRetrievalChain, QAGenerationChain, LLMChain
35
- from langchain.memory import ConversationBufferMemory
36
- from langchain.chains.question_answering import load_qa_chain
37
 
38
  from langchain.callbacks import StreamlitCallbackHandler
39
  from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
@@ -66,43 +63,6 @@ time_str = time.strftime("%d%m%Y-%H%M%S")
66
  HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
67
  margin-bottom: 2.5rem">{}</div> """
68
 
69
- memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
70
-
71
-
72
- #Stuff Chain Type Prompt template
73
-
74
- @st.cache_data
75
- def load_prompt():
76
-
77
- system_template="""Use only the following pieces of earnings context to answer the users question accurately.
78
- Do not use any information not provided in the earnings context and remember you are a to speak like a finance expert.
79
- If you don't know the answer, just say 'There is no relevant answer in the given earnings call transcript',
80
- don't try to make up an answer.
81
-
82
- ALWAYS return a "SOURCES" part in your answer.
83
- The "SOURCES" part should be a reference to the source of the document from which you got your answer.
84
-
85
- Remember, do not reference any information not given in the context.
86
-
87
- If the answer is not available in the given context just say 'There is no relevant answer in the given earnings call transcript'
88
-
89
- Follow the below format when answering:
90
-
91
- Question: {question}
92
- SOURCES: [xyz]
93
-
94
- Begin!
95
- ----------------
96
- {context}"""
97
-
98
- messages = [
99
- SystemMessagePromptTemplate.from_template(system_template),
100
- HumanMessagePromptTemplate.from_template("{question}")
101
- ]
102
- prompt = ChatPromptTemplate.from_messages(messages)
103
-
104
- return prompt
105
-
106
 
107
  ###################### Functions #######################################################################################
108
 
@@ -597,7 +557,8 @@ def create_vectorstore(corpus, title, embedding_model, chunk_size=1000, overlap=
597
  vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
598
 
599
  return vectorstore
600
-
 
601
  def create_memory_and_agent(query,_docsearch):
602
 
603
  '''Embed text and generate semantic search scores'''
 
30
  from langchain.vectorstores import FAISS
31
  from langchain.text_splitter import RecursiveCharacterTextSplitter
32
  from langchain.chat_models import ChatOpenAI
33
+ from langchain.chains import QAGenerationChain
 
 
 
34
 
35
  from langchain.callbacks import StreamlitCallbackHandler
36
  from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
 
63
  HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
64
  margin-bottom: 2.5rem">{}</div> """
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ###################### Functions #######################################################################################
68
 
 
557
  vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
558
 
559
  return vectorstore
560
+
561
+ @st.cache_data
562
  def create_memory_and_agent(query,_docsearch):
563
 
564
  '''Embed text and generate semantic search scores'''