Update functions.py
Browse files- functions.py +47 -48
functions.py
CHANGED
@@ -26,16 +26,12 @@ from pydub import AudioSegment
|
|
26 |
from langchain.docstore.document import Document
|
27 |
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
|
28 |
from langchain.vectorstores import FAISS
|
29 |
-
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
30 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
31 |
-
from langchain.
|
32 |
from langchain.callbacks.base import CallbackManager
|
33 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
34 |
-
from langchain.chains
|
35 |
-
from langchain import VectorDBQA
|
36 |
-
|
37 |
|
38 |
-
from langchain.chat_models import ChatOpenAI
|
39 |
from langchain.prompts.chat import (
|
40 |
ChatPromptTemplate,
|
41 |
SystemMessagePromptTemplate,
|
@@ -64,36 +60,40 @@ margin-bottom: 2.5rem">{}</div> """
|
|
64 |
|
65 |
#Stuff Chain Type Prompt template
|
66 |
|
67 |
-
|
68 |
-
Do not use any information not provided in the context and remember you are a finance expert.
|
69 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
70 |
-
ALWAYS return a "SOURCES" part in your answer.
|
71 |
-
The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
72 |
-
|
73 |
-
Remember, do not reference any information not given in the context.
|
74 |
-
|
75 |
-
Follow the below format when answering:
|
76 |
-
|
77 |
-
Question: [question here]
|
78 |
-
Helpful Answer: [answer here]
|
79 |
-
SOURCES: xyz
|
80 |
-
|
81 |
-
If there is no sources found please return the below:
|
82 |
-
|
83 |
-
```
|
84 |
-
The answer is foo
|
85 |
-
SOURCES: Please refer to references section
|
86 |
-
```
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
SystemMessagePromptTemplate.from_template(system_template),
|
94 |
-
HumanMessagePromptTemplate.from_template("{question}")
|
95 |
-
]
|
96 |
-
prompt = ChatPromptTemplate.from_messages(messages)
|
97 |
|
98 |
###################### Functions #######################################################################################
|
99 |
|
@@ -140,9 +140,9 @@ def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
|
|
140 |
|
141 |
embeddings = gen_embeddings(embedding_model)
|
142 |
|
143 |
-
|
144 |
|
145 |
-
return
|
146 |
|
147 |
@st.cache_data
|
148 |
def chunk_and_preprocess_text(text,thresh=500):
|
@@ -192,23 +192,22 @@ def embed_text(query,title,embedding_model,_docsearch):
|
|
192 |
|
193 |
'''Embed text and generate semantic search scores'''
|
194 |
|
|
|
195 |
# llm = OpenAI(temperature=0)
|
196 |
-
chat_llm = ChatOpenAI(streaming=True,
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
title = title.split()[0].lower()
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
llm=chat_llm,
|
204 |
-
chain_type="stuff",
|
205 |
-
vectorstore=_docsearch,
|
206 |
-
chain_type_kwargs=chain_type_kwargs,
|
207 |
-
return_source_documents=True,
|
208 |
-
k=3
|
209 |
-
)
|
210 |
|
211 |
-
answer = chain({"
|
212 |
|
213 |
return answer
|
214 |
|
|
|
26 |
from langchain.docstore.document import Document
|
27 |
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings
|
28 |
from langchain.vectorstores import FAISS
|
|
|
29 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
30 |
+
from langchain.chat_models import ChatOpenAI
|
31 |
from langchain.callbacks.base import CallbackManager
|
32 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
33 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
34 |
|
|
|
35 |
from langchain.prompts.chat import (
|
36 |
ChatPromptTemplate,
|
37 |
SystemMessagePromptTemplate,
|
|
|
60 |
|
61 |
#Stuff Chain Type Prompt template
|
62 |
|
63 |
+
# def load_prompt()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# system_template="""Use only the following pieces of earnings context to answer the users question thoroughly.
|
66 |
+
# Do not use any information not provided in the context and remember you are a finance expert.
|
67 |
+
# If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
68 |
+
# ALWAYS return a "SOURCES" part in your answer.
|
69 |
+
# The "SOURCES" part should be a reference to the source of the document from which you got your answer.
|
70 |
+
|
71 |
+
# Remember, do not reference any information not given in the context.
|
72 |
+
|
73 |
+
# Follow the below format when answering:
|
74 |
+
|
75 |
+
# Question: [question here]
|
76 |
+
# Helpful Answer: [answer here]
|
77 |
+
# SOURCES: xyz
|
78 |
+
|
79 |
+
# If there is no sources found please return the below:
|
80 |
+
|
81 |
+
# ```
|
82 |
+
# The answer is: foo
|
83 |
+
# SOURCES: Please refer to references section
|
84 |
+
# ```
|
85 |
+
|
86 |
+
# Begin!
|
87 |
+
# ----------------
|
88 |
+
# {context}"""
|
89 |
+
|
90 |
+
# messages = [
|
91 |
+
# SystemMessagePromptTemplate.from_template(system_template),
|
92 |
+
# HumanMessagePromptTemplate.from_template("{question}")
|
93 |
+
# ]
|
94 |
+
# prompt = ChatPromptTemplate.from_messages(messages)
|
95 |
|
96 |
+
# return prompt
|
|
|
|
|
|
|
|
|
97 |
|
98 |
###################### Functions #######################################################################################
|
99 |
|
|
|
140 |
|
141 |
embeddings = gen_embeddings(embedding_model)
|
142 |
|
143 |
+
vectorstore = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))])
|
144 |
|
145 |
+
return vectorstore
|
146 |
|
147 |
@st.cache_data
|
148 |
def chunk_and_preprocess_text(text,thresh=500):
|
|
|
192 |
|
193 |
'''Embed text and generate semantic search scores'''
|
194 |
|
195 |
+
chat_history = []
|
196 |
# llm = OpenAI(temperature=0)
|
197 |
+
chat_llm = ChatOpenAI(streaming=True,
|
198 |
+
model_name = 'gpt-3.5-turbo',
|
199 |
+
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
|
200 |
+
verbose=True,
|
201 |
+
temperature=0
|
202 |
+
)
|
203 |
|
204 |
title = title.split()[0].lower()
|
205 |
|
206 |
+
chain = ConversationalRetrievalChain.from_llm(chat_llm,
|
207 |
+
retriever= _docsearch.as_retriever(),
|
208 |
+
return_source_documents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
answer = chain({"question": question, "chat_history": chat_history})
|
211 |
|
212 |
return answer
|
213 |
|