nickmuchi commited on
Commit
4070bba
·
1 Parent(s): 92672ef

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +97 -86
functions.py CHANGED
@@ -145,9 +145,10 @@ def get_yt_audio(url):
145
  '''Get YT video from given URL link'''
146
  yt = YouTube(url)
147
 
 
 
148
  # Get the first available audio stream and download it
149
  audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
150
- title = audio_stream.split('\\')[-1].split('.')[0]
151
 
152
  return audio_stream, title
153
 
@@ -160,6 +161,101 @@ def load_whisper_api(audio):
160
 
161
  return transcript
162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
  @st.cache_data
164
  def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
165
 
@@ -299,91 +395,6 @@ def get_spacy():
299
  nlp = en_core_web_lg.load()
300
  return nlp
301
 
302
-
303
- def inference(link, upload, _asr_model):
304
- '''Convert Youtube video or Audio upload to text'''
305
-
306
- try:
307
-
308
- if validators.url(link):
309
-
310
- audio_file, title = get_yt_audio(link)
311
- # title = yt.title
312
-
313
- if 'audio' not in st.session_state:
314
- st.session_state['audio'] = audio_file
315
-
316
- #Get size of audio file
317
- audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)
318
-
319
- #Check if file is > 24mb, if not then use Whisper API
320
- if audio_size <= 25:
321
-
322
- #Use whisper API
323
- results = load_whisper_api(audio_file)['text']
324
-
325
- else:
326
-
327
- st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
328
-
329
- song = AudioSegment.from_file(audio_file, format='mp3')
330
-
331
- # PyDub handles time in milliseconds
332
- twenty_minutes = 20 * 60 * 1000
333
-
334
- chunks = song[::twenty_minutes]
335
-
336
- transcriptions = []
337
-
338
- for i, chunk in enumerate(chunks):
339
- chunk.export(f'output/chunk_{i}.mp3', format='mp3')
340
- transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp3')['text'])
341
-
342
- results = ','.join(transcriptions)
343
-
344
- return results, title
345
-
346
- elif _upload:
347
-
348
- #Get size of audio file
349
- audio_size = round(os.path.getsize(_upload)/(1024*1024),1)
350
-
351
- #Check if file is > 24mb, if not then use Whisper API
352
- if audio_size <= 25:
353
-
354
- #Use whisper API
355
- results = load_whisper_api(_upload)['text']
356
-
357
- else:
358
-
359
- st.write('File size larger than 24mb, applying chunking and transcription')
360
-
361
- song = AudioSegment.from_file(_upload)
362
-
363
- # PyDub handles time in milliseconds
364
- twenty_minutes = 20 * 60 * 1000
365
-
366
- chunks = song[::twenty_minutes]
367
-
368
- transcriptions = []
369
-
370
- for i, chunk in enumerate(chunks):
371
- chunk.export(f'output/chunk_{i}.mp3', format='mp3')
372
- transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
373
-
374
- results = ','.join(transcriptions)
375
-
376
- return results, "Transcribed Earnings Audio"
377
-
378
- except Exception as e:
379
-
380
- st.error(f'''Whisper API Error: {e},
381
- Using Whisper module from GitHub, might take longer than expected''',icon="🚨")
382
-
383
- results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
384
-
385
- return results['text'], title
386
-
387
 
388
  @st.cache_data
389
  def sentiment_pipe(earnings_text):
 
145
  '''Get YT video from given URL link'''
146
  yt = YouTube(url)
147
 
148
+ title = yt.title
149
+
150
  # Get the first available audio stream and download it
151
  audio_stream = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
 
152
 
153
  return audio_stream, title
154
 
 
161
 
162
  return transcript
163
 
164
+ def inference(link, upload, _asr_model):
165
+ '''Convert Youtube video or Audio upload to text'''
166
+
167
+ try:
168
+
169
+ if validators.url(link):
170
+
171
+ st.info("`Downloading YT audio...`")
172
+
173
+ audio_file, title = get_yt_audio(link)
174
+
175
+ if 'audio' not in st.session_state:
176
+ st.session_state['audio'] = audio_file
177
+
178
+ #Get size of audio file
179
+ audio_size = round(os.path.getsize(audio_file)/(1024*1024),1)
180
+
181
+ #Check if file is > 24mb, if not then use Whisper API
182
+ if audio_size <= 25:
183
+
184
+ st.info("`Transcribing YT audio...`")
185
+
186
+ #Use whisper API
187
+ results = load_whisper_api(audio_file)['text']
188
+
189
+ else:
190
+
191
+ st.warning('File size larger than 24mb, applying chunking and transcription',icon="⚠️")
192
+
193
+ song = AudioSegment.from_file(audio_file, format='mp4')
194
+
195
+ # PyDub handles time in milliseconds
196
+ twenty_minutes = 20 * 60 * 1000
197
+
198
+ chunks = song[::twenty_minutes]
199
+
200
+ transcriptions = []
201
+
202
+ for i, chunk in enumerate(chunks):
203
+ chunk.export(f'output/chunk_{i}.mp4', format='mp4')
204
+ transcriptions.append(load_whisper_api(f'output/chunk_{i}.mp4')['text'])
205
+
206
+ results = ','.join(transcriptions)
207
+
208
+ st.info("`YT Video transcription process complete...`")
209
+
210
+ return results, title
211
+
212
+ elif _upload:
213
+
214
+ #Get size of audio file
215
+ audio_size = round(os.path.getsize(_upload)/(1024*1024),1)
216
+
217
+ #Check if file is > 24mb, if not then use Whisper API
218
+ if audio_size <= 25:
219
+
220
+ st.info("`Transcribing uploaded audio...`")
221
+
222
+ #Use whisper API
223
+ results = load_whisper_api(_upload)['text']
224
+
225
+ else:
226
+
227
+ st.write('File size larger than 24mb, applying chunking and transcription')
228
+
229
+ song = AudioSegment.from_file(_upload)
230
+
231
+ # PyDub handles time in milliseconds
232
+ twenty_minutes = 20 * 60 * 1000
233
+
234
+ chunks = song[::twenty_minutes]
235
+
236
+ transcriptions = []
237
+
238
+ st.info("`Transcribing uploaded audio...`")
239
+
240
+ for i, chunk in enumerate(chunks):
241
+ chunk.export(f'output/chunk_{i}.mp3', format='mp3')
242
+ transcriptions.append(load_whisper_api('output/chunk_{i}.mp3')['text'])
243
+
244
+ results = ','.join(transcriptions)
245
+
246
+ st.info("`Uploaded audio transcription process complete...`")
247
+
248
+ return results, "Transcribed Earnings Audio"
249
+
250
+ except Exception as e:
251
+
252
+ st.error(f'''Whisper API Error: {e},
253
+ Using Whisper module from GitHub, might take longer than expected''',icon="🚨")
254
+
255
+ results = _asr_model.transcribe(st.session_state['audio'], task='transcribe', language='en')
256
+
257
+ return results['text'], title
258
+
259
  @st.cache_data
260
  def process_corpus(corpus, title, embedding_model, chunk_size=1000, overlap=50):
261
 
 
395
  nlp = en_core_web_lg.load()
396
  return nlp
397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
 
399
  @st.cache_data
400
  def sentiment_pipe(earnings_text):