nickmuchi commited on
Commit
edd60a3
·
1 Parent(s): 41f8f8d

Update functions.py

Browse files
Files changed (1) hide show
  1. functions.py +13 -5
functions.py CHANGED
@@ -138,7 +138,8 @@ def summary_downloader(raw_text):
138
  st.markdown("#### Download Summary as a File ###")
139
  href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
140
  st.markdown(href,unsafe_allow_html=True)
141
-
 
142
  def get_all_entities_per_sentence(text):
143
  doc = nlp(''.join(text))
144
 
@@ -166,11 +167,13 @@ def get_all_entities_per_sentence(text):
166
  entities_all_sentences.append(entities_this_sentence)
167
 
168
  return entities_all_sentences
169
-
 
170
  def get_all_entities(text):
171
  all_entities_per_sentence = get_all_entities_per_sentence(text)
172
  return list(itertools.chain.from_iterable(all_entities_per_sentence))
173
-
 
174
  def get_and_compare_entities(article_content,summary_output):
175
 
176
  all_entities_per_sentence = get_all_entities_per_sentence(article_content)
@@ -218,6 +221,7 @@ def get_and_compare_entities(article_content,summary_output):
218
 
219
  return matched_entities, unmatched_entities
220
 
 
221
  def highlight_entities(article_content,summary_output):
222
 
223
  markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
@@ -252,7 +256,8 @@ def display_df_as_table(model,top_k,score='score'):
252
  df['Score'] = round(df['Score'],2)
253
 
254
  return df
255
-
 
256
  def make_spans(text,results):
257
  results_list = []
258
  for i in range(len(results)):
@@ -264,4 +269,7 @@ def make_spans(text,results):
264
  ##Fiscal Sentiment by Sentence
265
  def fin_ext(text):
266
  results = remote_clx(sent_tokenizer(text))
267
- return make_spans(text,results)
 
 
 
 
138
  st.markdown("#### Download Summary as a File ###")
139
  href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>'
140
  st.markdown(href,unsafe_allow_html=True)
141
+
142
+ @st.experimental_memo(suppress_st_warning=True)
143
  def get_all_entities_per_sentence(text):
144
  doc = nlp(''.join(text))
145
 
 
167
  entities_all_sentences.append(entities_this_sentence)
168
 
169
  return entities_all_sentences
170
+
171
+ @st.experimental_memo(suppress_st_warning=True)
172
  def get_all_entities(text):
173
  all_entities_per_sentence = get_all_entities_per_sentence(text)
174
  return list(itertools.chain.from_iterable(all_entities_per_sentence))
175
+
176
+ @st.experimental_memo(suppress_st_warning=True)
177
  def get_and_compare_entities(article_content,summary_output):
178
 
179
  all_entities_per_sentence = get_all_entities_per_sentence(article_content)
 
221
 
222
  return matched_entities, unmatched_entities
223
 
224
+ @st.experimental_memo(suppress_st_warning=True)
225
  def highlight_entities(article_content,summary_output):
226
 
227
  markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
 
256
  df['Score'] = round(df['Score'],2)
257
 
258
  return df
259
+
260
+
261
  def make_spans(text,results):
262
  results_list = []
263
  for i in range(len(results)):
 
269
  ##Fiscal Sentiment by Sentence
270
  def fin_ext(text):
271
  results = remote_clx(sent_tokenizer(text))
272
+ return make_spans(text,results)
273
+
274
+ nlp = get_spacy()
275
+ asr_model, sent_pipe, sum_pipe, ner_pipe, sbert, cross_encoder = load_models()