Update functions.py
Browse files- functions.py +29 -16
functions.py
CHANGED
@@ -94,10 +94,12 @@ initial_qa_template = (
|
|
94 |
"answer the question: {question}\n.\n"
|
95 |
)
|
96 |
|
97 |
-
|
98 |
|
99 |
@st.experimental_singleton(suppress_st_warning=True)
|
100 |
def load_models():
|
|
|
|
|
101 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
102 |
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
103 |
kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
|
@@ -128,7 +130,9 @@ def load_asr_model(asr_model_name):
|
|
128 |
# return sbert
|
129 |
|
130 |
@st.experimental_singleton(suppress_st_warning=True)
|
131 |
-
def process_corpus(corpus, tok, chunk_size=200, overlap=50):
|
|
|
|
|
132 |
|
133 |
pinecone.init(api_key="2d1e8029-2d84-4724-9f7c-a4f0f5ae908a", environment="us-west1-gcp")
|
134 |
|
@@ -137,10 +141,19 @@ def process_corpus(corpus, tok, chunk_size=200, overlap=50):
|
|
137 |
|
138 |
texts = text_splitter.split_text(corpus)
|
139 |
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
@st.experimental_memo(suppress_st_warning=True)
|
143 |
-
def embed_text(query,corpus,title,embedding_model,chain_type='stuff'):
|
144 |
|
145 |
'''Embed text and generate semantic search scores'''
|
146 |
|
@@ -156,15 +169,9 @@ def embed_text(query,corpus,title,embedding_model,chain_type='stuff'):
|
|
156 |
|
157 |
embeddings = HuggingFaceEmbeddings(model_name=f'sentence-transformers/{embedding_model}')
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
index_name = index_id,
|
163 |
-
namespace = f'{title}-earnings',
|
164 |
-
metadatas = [
|
165 |
-
{'source':i} for i in range(len(texts))]
|
166 |
-
)
|
167 |
-
|
168 |
docs = docsearch.similarity_search_with_score(query, k=3, namespace = f'{title}-earnings')
|
169 |
|
170 |
docs = [d[0] for d in docs]
|
@@ -186,8 +193,14 @@ def embed_text(query,corpus,title,embedding_model,chain_type='stuff'):
|
|
186 |
|
187 |
elif chain_type == 'refine':
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
# @st.experimental_memo(suppress_st_warning=True)
|
193 |
# def embed_text(query,corpus,embedding_model):
|
@@ -304,7 +317,7 @@ def clean_text(text):
|
|
304 |
|
305 |
@st.experimental_memo(suppress_st_warning=True)
|
306 |
def chunk_long_text(text,threshold,window_size=3,stride=2):
|
307 |
-
'''Preprocess text and chunk for
|
308 |
|
309 |
#Convert cleaned text into sentences
|
310 |
sentences = sent_tokenize(text)
|
|
|
94 |
"answer the question: {question}\n.\n"
|
95 |
)
|
96 |
|
97 |
+
###################### Functions #######################################################################################
|
98 |
|
99 |
@st.experimental_singleton(suppress_st_warning=True)
|
100 |
def load_models():
|
101 |
+
|
102 |
+
'''Load and cache all the models to be used'''
|
103 |
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
104 |
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
|
105 |
kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
|
|
|
130 |
# return sbert
|
131 |
|
132 |
@st.experimental_singleton(suppress_st_warning=True)
|
133 |
+
def process_corpus(corpus, tok, title, embeddings, chunk_size=200, overlap=50):
|
134 |
+
|
135 |
+
'''Process text for Semantic Search'''
|
136 |
|
137 |
pinecone.init(api_key="2d1e8029-2d84-4724-9f7c-a4f0f5ae908a", environment="us-west1-gcp")
|
138 |
|
|
|
141 |
|
142 |
texts = text_splitter.split_text(corpus)
|
143 |
|
144 |
+
docsearch = Pinecone.from_texts(
|
145 |
+
texts,
|
146 |
+
embeddings,
|
147 |
+
index_name = index_id,
|
148 |
+
namespace = f'{title}-earnings',
|
149 |
+
metadatas = [
|
150 |
+
{'source':i} for i in range(len(texts))]
|
151 |
+
)
|
152 |
+
|
153 |
+
return docsearch
|
154 |
|
155 |
@st.experimental_memo(suppress_st_warning=True)
|
156 |
+
def embed_text(query,corpus,title,embedding_model,emb_tok,chain_type='stuff'):
|
157 |
|
158 |
'''Embed text and generate semantic search scores'''
|
159 |
|
|
|
169 |
|
170 |
embeddings = HuggingFaceEmbeddings(model_name=f'sentence-transformers/{embedding_model}')
|
171 |
|
172 |
+
title = title[0]
|
173 |
+
docsearch = process_corpus(corpus,embed_tok,title, embeddings)
|
174 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
docs = docsearch.similarity_search_with_score(query, k=3, namespace = f'{title}-earnings')
|
176 |
|
177 |
docs = [d[0] for d in docs]
|
|
|
193 |
|
194 |
elif chain_type == 'refine':
|
195 |
|
196 |
+
initial_qa_prompt = PromptTemplate(
|
197 |
+
input_variables=["context_str", "question"], template=initial_qa_template
|
198 |
+
)
|
199 |
+
chain = load_qa_chain(OpenAI(temperature=0), chain_type="refine", return_refine_steps=False,
|
200 |
+
question_prompt=initial_qa_prompt, refine_prompt=refine_prompt)
|
201 |
+
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
|
202 |
+
|
203 |
+
return answer['output_text']
|
204 |
|
205 |
# @st.experimental_memo(suppress_st_warning=True)
|
206 |
# def embed_text(query,corpus,embedding_model):
|
|
|
317 |
|
318 |
@st.experimental_memo(suppress_st_warning=True)
|
319 |
def chunk_long_text(text,threshold,window_size=3,stride=2):
|
320 |
+
'''Preprocess text and chunk for sentiment analysis'''
|
321 |
|
322 |
#Convert cleaned text into sentences
|
323 |
sentences = sent_tokenize(text)
|