Datasets:
Tasks:
Tabular Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
File size: 7,463 Bytes
20b7f58 451c61e fdd153a 32f7cd6 451c61e e9c5a18 451c61e 7e3bc62 451c61e 32f7cd6 451c61e ac58abf e9c5a18 ac58abf e9c5a18 b04b710 d4f1bfe e9c5a18 b04b710 d4f1bfe ac58abf e9c5a18 2db1957 e9c5a18 794f9cc e9c5a18 88fa63a d6493a6 ac58abf e9c5a18 b04b710 ac58abf e9c5a18 2db1957 e9c5a18 794f9cc e9c5a18 88fa63a d6493a6 ac58abf e9c5a18 b04b710 ffbf304 29631ef e9c5a18 794f9cc e9c5a18 88fa63a d6493a6 88fa63a d6493a6 88fa63a d6493a6 fdd153a d66374f eeea18b ef95433 eeea18b 2db1957 eeea18b 498c0b3 eeea18b 498c0b3 8785d49 027e26f eeea18b 794f9cc 7e913dc eeea18b 794f9cc 7e913dc 027e26f 794f9cc 027e26f eeea18b 794f9cc eeea18b ef80c41 eeea18b 794f9cc 0680592 27c5be6 7e913dc eeea18b ef80c41 eeea18b ef80c41 0680592 d66374f 291ce5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language: en
source_datasets: curated
license: mit
tags:
- chemistry
- toxicology
pretty_name: Human & Rat Liver Microsomal Stability
dataset_summary: >-
Curation of databases of compounds for assessing human liver microsomes (HLM)
stability and rat liver microsomes (RLM) stability.
citation: |-
@article{
author = {Longqiang Li, Zhou Lu, Guixia Liu, Yun Tang, and Weihua Li},
doi = {10.1021/acs.chemrestox.2c00207},
journal = {Chemical Research in Toxicology},
number = {9},
title = {In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods},
volume = {35},
year = {2022},
url = {https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00207},
publisher = {American Chemical Society}
}
size_categories:
- 10K<n<100K
config_names:
- HLM
- RLM
- Marketed_Drug
configs:
- config_name: HLM
data_files:
- split: test
path: HLM/test.csv
- split: train
path: HLM/train.csv
- split: external
path: HLM/external.csv
- config_name: RLM
data_files:
- split: test
path: RLM/test.csv
- split: train
path: RLM/train.csv
- split: external
path: RLM/external.csv
- config_name: Marketed_Drug
dataset_info:
- config_name: HLM
features:
- name: ID
dtype: string
- name: SMILES
dtype: string
- name: Y
dtype: int64
description: >-
Binary classification where '0' represents 'stable' compounds and '1' represents 'unstable' compounds.
splits:
- name: train
num_bytes: 190968
num_examples: 4771
- name: test
num_bytes: 45368
num_examples: 1131
- name: external
num_bytes: 4568
num_examples: 111
- config_name: RLM
features:
- name: ID
dtype: string
- name: SMILES
dtype: string
- name: Y
dtype: int64
description: >-
Binary classification where '0' represents 'stable' compounds and '1' represents 'unstable' compounds.
splits:
- name: train
num_bytes: 100608
num_examples: 2512
- name: test
num_bytes: 23968
num_examples: 596
- name: external
num_bytes: 99408
num_examples: 2484
- config_name: Marketed_Drug
features:
- name: SMILES
dtype: string
- name: Class
dtype: int64
description: >-
Binary classification where '0' represents 'stable' compounds and '1' represents 'unstable' compounds.
- name: Online server predicted class
dtype: int64
description: >-
Binary classification where '0' represents 'stable' compounds and '1' represents 'unstable' compounds.
- name: Our predicted class
dtype: int64
description: >-
Binary classification where '0' represents 'stable' compounds and '1' represents 'unstable' compounds.
task_categories:
- tabular-classification
---
# Human & Rat Liver Microsomal Stability
3345 RLM and 6420 HLM compounds were initially collected from the ChEMBL bioactivity database.
(HLM ID: 613373, 2367379, and 612558; RLM ID: 613694, 2367428, and 612558)
Finally, the RLM stability data set contains 3108 compounds, and the HLM stability data set contains 5902 compounds.
For the RLM stability data set, 1542 (49.6%) compounds were classified as stable, and 1566 (50.4%) compounds were classified as unstable,
among which the training and test sets contain 2512 and 596 compounds, respectively.
The experimental data from the National Center for Advancing Translational Sciences (PubChem AID 1508591) were used as the RLM external set.
For the HLM data set, 3799 (64%) compounds were classified as stable, and 2103 (36%) compounds were classified as unstable.
In addition, an external set from Liu et al.12 was used to evaluate the predictive power of the HLM model.
The datasets uploaded to our Hugging Face repository are sanitized and reorganized versions.
(We have sanitized the molecules from the original paper, using MolVS.)
## Quickstart Usage
### Load a dataset in python
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the `HLM_RLM` datasets, e.g.,
>>> HLM = datasets.load_dataset("maomlab/HLM_RLM", name = "HLM")
Downloading readme: 100%|ββββββββββββββββββββββββ| 6.93k/6.93kβ[00:00<00:00,β280kB/s]
Downloading data: 100%|ββββββββββββββββββββββββββ| 680k/680k [00:00<00:00, 946kB/s]
Downloading data: 100%|ββββββββββββββββββββββββββ| 925k/925kβ[00:01<00:00,β634kB/s]
Downloading data: 100%|ββββββββββββββββββββββββββ| 39.7k/39.7kβ[00:00<00:00,β90.8kB/s]
Generating test split: 100%|βββββββββββββββββββββ| 1131/1131 [00:00<00:00, 20405.98 examples/s]
Generating train split: 100%|ββββββββββββββββββββ| 4771/4771 [00:00<00:00, 65495.46 examples/s]
Generating external split: 100%|ββββββββββββββββββββ| 111/111 [00:00<00:00, 3651.94 examples/s]
and inspecting the loaded dataset
>>> HLM
HLM
DatasetDict({
test: Dataset({
features: ['ID','SMILES', 'Y'],
num_rows: 1131
})
train: Dataset({
features: ['ID','SMILES', 'Y'],
num_rows: 4771
})
external: Dataset({
features: ['ID','SMILES', 'Y'],
num_rows: 111
})
})
### Use a dataset to train a model
One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia.
First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the a catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
split_dataset = load_dataset('maomlab/HLM_RLM', name = 'HLM')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_classifier",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y'],
}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
classification_suite = load_suite("classification")
scores = classification_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_classifier::Y"])
## Citation
Chem. Res. Toxicol. 2022, 35, 9, 1614β1624
Publication Date:September 2, 2022
https://doi.org/10.1021/acs.chemrestox.2c00207 |