Datasets:
Tasks:
Tabular Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -182,7 +182,7 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
182 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
183 |
|
184 |
model = load_model_from_dict({
|
185 |
-
"name": "
|
186 |
"config": {
|
187 |
"x_features": ['smiles::morgan', 'smiles::maccs_rdkit'],
|
188 |
"y_features": ['Class'],
|
@@ -191,10 +191,10 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
191 |
model.train(split_featurised_dataset["train"])
|
192 |
preds = model.predict(split_featurised_dataset["test"])
|
193 |
|
194 |
-
|
195 |
|
196 |
-
scores =
|
197 |
references=split_featurised_dataset["test"]['Class'],
|
198 |
-
predictions=preds["
|
199 |
|
200 |
## Citation
|
|
|
182 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
183 |
|
184 |
model = load_model_from_dict({
|
185 |
+
"name": "cat_boost_classifier",
|
186 |
"config": {
|
187 |
"x_features": ['smiles::morgan', 'smiles::maccs_rdkit'],
|
188 |
"y_features": ['Class'],
|
|
|
191 |
model.train(split_featurised_dataset["train"])
|
192 |
preds = model.predict(split_featurised_dataset["test"])
|
193 |
|
194 |
+
classification_suite = load_suite("classification")
|
195 |
|
196 |
+
scores = classification_suite.compute(
|
197 |
references=split_featurised_dataset["test"]['Class'],
|
198 |
+
predictions=preds["cat_boost_classifier::Class"])
|
199 |
|
200 |
## Citation
|