Datasets:
Tasks:
Tabular Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -50,9 +50,9 @@ dataset_info:
|
|
50 |
features:
|
51 |
- name: ID
|
52 |
dtype: string
|
53 |
-
- name:
|
54 |
dtype: string
|
55 |
-
- name:
|
56 |
dtype:
|
57 |
class_label:
|
58 |
names:
|
@@ -72,9 +72,9 @@ dataset_info:
|
|
72 |
features:
|
73 |
- name: ID
|
74 |
dtype: string
|
75 |
-
- name:
|
76 |
dtype: string
|
77 |
-
- name:
|
78 |
dtype:
|
79 |
class_label:
|
80 |
names:
|
@@ -92,7 +92,7 @@ dataset_info:
|
|
92 |
num_examples: 2482
|
93 |
- config_name: Marketed_Drug
|
94 |
features:
|
95 |
-
- name:
|
96 |
dtype: string
|
97 |
- name: Class
|
98 |
dtype:
|
@@ -159,15 +159,15 @@ and inspecting the loaded dataset
|
|
159 |
HLM
|
160 |
DatasetDict({
|
161 |
test: Dataset({
|
162 |
-
features: ['
|
163 |
num_rows: 1131
|
164 |
})
|
165 |
train: Dataset({
|
166 |
-
features: ['
|
167 |
num_rows: 4771
|
168 |
})
|
169 |
external: Dataset({
|
170 |
-
features: ['
|
171 |
num_rows: 111
|
172 |
})
|
173 |
})
|
@@ -192,13 +192,13 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
192 |
|
193 |
split_featurised_dataset = featurise_dataset(
|
194 |
split_dataset,
|
195 |
-
column = "
|
196 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
197 |
|
198 |
model = load_model_from_dict({
|
199 |
"name": "cat_boost_classifier",
|
200 |
"config": {
|
201 |
-
"x_features": ['
|
202 |
"y_features": ['Class'],
|
203 |
}})
|
204 |
|
|
|
50 |
features:
|
51 |
- name: ID
|
52 |
dtype: string
|
53 |
+
- name: SMILES
|
54 |
dtype: string
|
55 |
+
- name: Y
|
56 |
dtype:
|
57 |
class_label:
|
58 |
names:
|
|
|
72 |
features:
|
73 |
- name: ID
|
74 |
dtype: string
|
75 |
+
- name: SMILES
|
76 |
dtype: string
|
77 |
+
- name: Y
|
78 |
dtype:
|
79 |
class_label:
|
80 |
names:
|
|
|
92 |
num_examples: 2482
|
93 |
- config_name: Marketed_Drug
|
94 |
features:
|
95 |
+
- name: SMILES
|
96 |
dtype: string
|
97 |
- name: Class
|
98 |
dtype:
|
|
|
159 |
HLM
|
160 |
DatasetDict({
|
161 |
test: Dataset({
|
162 |
+
features: ['ID','SMILES', 'Y'],
|
163 |
num_rows: 1131
|
164 |
})
|
165 |
train: Dataset({
|
166 |
+
features: ['ID','SMILES', 'Y'],
|
167 |
num_rows: 4771
|
168 |
})
|
169 |
external: Dataset({
|
170 |
+
features: ['ID','SMILES', 'Y'],
|
171 |
num_rows: 111
|
172 |
})
|
173 |
})
|
|
|
192 |
|
193 |
split_featurised_dataset = featurise_dataset(
|
194 |
split_dataset,
|
195 |
+
column = "SMILES",
|
196 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
197 |
|
198 |
model = load_model_from_dict({
|
199 |
"name": "cat_boost_classifier",
|
200 |
"config": {
|
201 |
+
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
202 |
"y_features": ['Class'],
|
203 |
}})
|
204 |
|