Datasets:
Tasks:
Tabular Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -199,7 +199,7 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
199 |
"name": "cat_boost_classifier",
|
200 |
"config": {
|
201 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
202 |
-
"y_features": ['
|
203 |
}})
|
204 |
|
205 |
model.train(split_featurised_dataset["train"])
|
@@ -208,8 +208,8 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
208 |
classification_suite = load_suite("classification")
|
209 |
|
210 |
scores = classification_suite.compute(
|
211 |
-
references=split_featurised_dataset["test"]['
|
212 |
-
predictions=preds["cat_boost_classifier::
|
213 |
|
214 |
## Citation
|
215 |
Chem. Res. Toxicol. 2022, 35, 9, 1614–1624
|
|
|
199 |
"name": "cat_boost_classifier",
|
200 |
"config": {
|
201 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
202 |
+
"y_features": ['Y'],
|
203 |
}})
|
204 |
|
205 |
model.train(split_featurised_dataset["train"])
|
|
|
208 |
classification_suite = load_suite("classification")
|
209 |
|
210 |
scores = classification_suite.compute(
|
211 |
+
references=split_featurised_dataset["test"]['Y'],
|
212 |
+
predictions=preds["cat_boost_classifier::Y"])
|
213 |
|
214 |
## Citation
|
215 |
Chem. Res. Toxicol. 2022, 35, 9, 1614–1624
|