haneulpark commited on
Commit
7e913dc
·
verified ·
1 Parent(s): eeea18b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -13
README.md CHANGED
@@ -125,12 +125,12 @@ and inspecting the loaded dataset
125
  HLM
126
  DatasetDict({
127
  test: Dataset({
128
- features: ['NO.', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', 'BBB+/BBB-', 'Inchi', 'threshold', 'reference', 'group', 'comments', 'ClusterNo', 'MolCount'],
129
- num_rows: 1951
130
  })
131
  train: Dataset({
132
- features: ['NO.', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', 'BBB+/BBB-', 'Inchi', 'threshold', 'reference', 'group', 'comments', 'ClusterNo', 'MolCount'],
133
- num_rows: 5856
134
  })
135
  })
136
 
@@ -158,18 +158,19 @@ then load, featurize, split, fit, and evaluate the a catboost model
158
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
159
 
160
  model = load_model_from_dict({
161
- "name": "cat_boost_classifier",
162
  "config": {
163
- "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
164
- "y_features": ['BBB+/BBB-']}})
165
-
 
166
  model.train(split_featurised_dataset["train"])
167
  preds = model.predict(split_featurised_dataset["test"])
168
 
169
- classification_suite = load_suite("classification")
170
 
171
- scores = classification_suite.compute(
172
- references=split_featurised_dataset["test"]['BBB+/BBB-'],
173
- predictions=preds["cat_boost_classifier::BBB+/BBB-"])
174
-
175
 
 
 
125
  HLM
126
  DatasetDict({
127
  test: Dataset({
128
+ features: ['ChEMBL ID (source)', 'IUPAC Names', 'Smiles', 'Class', 'Dataset'],
129
+ num_rows: 1131
130
  })
131
  train: Dataset({
132
+ features: ['ChEMBL ID (source)', 'IUPAC Names', 'Smiles', 'Class', 'Dataset'],,
133
+ num_rows: 4771
134
  })
135
  })
136
 
 
158
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
159
 
160
  model = load_model_from_dict({
161
+ "name": "cat_boost__regressor",
162
  "config": {
163
+ "x_features": ['smiles::morgan', 'smiles::maccs_rdkit'],
164
+ "y_features": ['log_solubility'],
165
+ })
166
+
167
  model.train(split_featurised_dataset["train"])
168
  preds = model.predict(split_featurised_dataset["test"])
169
 
170
+ regression_suite = load_suite("regression")
171
 
172
+ scores = regression_suite.compute(
173
+ references=split_featurised_dataset["test"]['Solubility'],
174
+ predictions=preds["cat_boost_regressor::Solubility"])
 
175
 
176
+ ## Citation