Datasets:
Tasks:
Tabular Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -125,12 +125,12 @@ and inspecting the loaded dataset
|
|
125 |
HLM
|
126 |
DatasetDict({
|
127 |
test: Dataset({
|
128 |
-
features: ['
|
129 |
-
num_rows:
|
130 |
})
|
131 |
train: Dataset({
|
132 |
-
features: ['
|
133 |
-
num_rows:
|
134 |
})
|
135 |
})
|
136 |
|
@@ -158,18 +158,19 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
158 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
159 |
|
160 |
model = load_model_from_dict({
|
161 |
-
"name": "
|
162 |
"config": {
|
163 |
-
"x_features": ['
|
164 |
-
"y_features": ['
|
165 |
-
|
|
|
166 |
model.train(split_featurised_dataset["train"])
|
167 |
preds = model.predict(split_featurised_dataset["test"])
|
168 |
|
169 |
-
|
170 |
|
171 |
-
scores =
|
172 |
-
references=split_featurised_dataset["test"]['
|
173 |
-
predictions=preds["
|
174 |
-
|
175 |
|
|
|
|
125 |
HLM
|
126 |
DatasetDict({
|
127 |
test: Dataset({
|
128 |
+
features: ['ChEMBL ID (source)', 'IUPAC Names', 'Smiles', 'Class', 'Dataset'],
|
129 |
+
num_rows: 1131
|
130 |
})
|
131 |
train: Dataset({
|
132 |
+
features: ['ChEMBL ID (source)', 'IUPAC Names', 'Smiles', 'Class', 'Dataset'],,
|
133 |
+
num_rows: 4771
|
134 |
})
|
135 |
})
|
136 |
|
|
|
158 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
159 |
|
160 |
model = load_model_from_dict({
|
161 |
+
"name": "cat_boost__regressor",
|
162 |
"config": {
|
163 |
+
"x_features": ['smiles::morgan', 'smiles::maccs_rdkit'],
|
164 |
+
"y_features": ['log_solubility'],
|
165 |
+
})
|
166 |
+
|
167 |
model.train(split_featurised_dataset["train"])
|
168 |
preds = model.predict(split_featurised_dataset["test"])
|
169 |
|
170 |
+
regression_suite = load_suite("regression")
|
171 |
|
172 |
+
scores = regression_suite.compute(
|
173 |
+
references=split_featurised_dataset["test"]['Solubility'],
|
174 |
+
predictions=preds["cat_boost_regressor::Solubility"])
|
|
|
175 |
|
176 |
+
## Citation
|