ID
stringlengths
8
13
SMILES
stringlengths
14
227
Y
int64
0
1
CHEMBL1780101
Cc1cccc(CNC(=O)[C@H]2C[C@H](c3nnc(C)o3)CN(Cc3nc(-c4ccccc4)oc3C)C2)n1
1
CHEMBL392432
NC1CN(c2cc(-c3ccsc3)ncn2)CC1c1ccc(Cl)cc1Cl
0
CHEMBL3598104
CCC(F)(F)C(=O)N1CCC(O[C@H]2CC[C@H](Oc3cnc(S(C)(=O)=O)cn3)CC2)CC1
0
CHEMBL1673016
CC(C)N1C(=O)C(=O)N=C1NC(=NCC(C)(C)C)Nc1ccc(Cl)c(Cl)c1
0
CHEMBL4172804
CNC(=O)[C@@H](NC(=O)c1ccc(-c2ccc(CSc3nc(O)c4c(n3)CCC4)c(F)c2)o1)C(C)(C)O
0
CHEMBL272114
Cn1cnc2cc(C#N)c(-c3ccccc3Cl)c(CN)c21
0
CHEMBL3633360
COc1cc(-c2nccc3[nH]c(-c4cccc5[nH]ccc45)nc23)cc(OC)c1OC
0
CHEMBL4445911
CCN(c1cc2oc(-c3ccc(F)cc3)c(C(=O)NC)c2cc1-c1ccc(OC)c(C(=O)NC2(c3ncccn3)CC2)c1)S(C)(=O)=O
0
CHEMBL2385104
COc1ccc(-c2cc(C3=Nc4c(C(C)(C)C)nn(CCO)c4C(=O)NC3)ccc2OC)c(OC)c1
0
CHEMBL3408940
CN1CCN(c2ccc(C=Cc3[nH]nc4cc([C@@H]5C[C@@]56C(=O)N(C)c5ccccc56)ccc34)cn2)CC1
1
CHEMBL179621
Cc1ccsc1-c1ccc(F)nc1
0
CHEMBL1922128
COc1cccc(CNC(=O)c2cn(CCCO)c3cc(-c4cn[nH]c4)ccc23)c1
1
CHEMBL3287179
CCC(=O)N1CCc2cc(-c3cncc4ccccc34)ccc21
1
CHEMBL257409
CC(C)CCn1nc(-c2cccs2)c(O)c(C2=NS(=O)(=O)c3cc(NS(=O)(=O)C4CC4)ccc3N2)c1=O
0
CHEMBL2181300
COc1ccc(-c2cc(-c3ccc4nccn4c3)cnc2N)cn1
0
CHEMBL1774632
CC[C@H]1OC(=O)[C@H](C)[C@@H](O[C@H]2C[C@@](C)(OC)[C@@H](O)[C@H](C)O2)[C@H](C)[C@@H](O[C@@H]2O[C@H](C)C[C@H](N(C)C)[C@H]2O)[C@](C)(O)C[C@@H](C)CN(CCNC(=S)Nc2ccccc2)[C@H](C)[C@@H](O)[C@]1(C)O
0
CHEMBL3759378
CCN(C)S(=O)(=O)NC(=O)c1ccc2c(C3CCCCC3)c3n(c2c1)CC1(C(=O)N2C4CCC2CN(C)C4)CC1c1cc(OC)ccc1-3
1
CHEMBL514038
Cc1cc(Nc2cccc(F)c2)n2ncnc2n1
0
CHEMBL1650439
Cn1c(=O)cc(N2CCC[C@@H](N)C2)n(Cc2ccccc2Br)c1=O
0
CHEMBL1630772
CC1CCC(N(C)c2ncnc3[nH]ccc23)CC1
1
CHEMBL3752066
COC(=O)Nc1ccc(C(=O)N[C@@H](Cc2ccccc2)C(=O)NCCc2cc(Cl)ccc2-n2cnnn2)cc1
1
CHEMBL3577868
CC(C)NC(=O)N[C@H]1CC[C@H](Nc2ncc3ccc(=O)n(C(C)C)c3n2)CC1
0
CHEMBL3753740
O=C(O)CCNc1nc(N2CCc3ccccc3CC2)cc(-n2nccn2)n1
0
CHEMBL1778483
Cn1c(-c2ccccn2)c(C2CCCCC2)c2ccc(C(=O)NC3(C(=O)Nc4ccc(C=CC(=O)O)cc4)CCCCC3)cc21
0
CHEMBL4638463
CCP(=O)(OC)c1ccc2oc(-c3ccc(Cl)cc3)nc2c1
0
CHEMBL4638463
C[C@H](NC(=O)c1cc2c(=O)n3ccccc3nc2n(Cc2ccccc2)c1=N)c1ccccc1
1
CHEMBL4448442
NS(=O)(=O)CC(=O)NCCSc1nonc1C(=NO)Nc1ccc(F)c(Br)c1
0
CHEMBL4473864
CC(C)(C(=O)NCCOc1ccccc1)S(=O)(=O)c1ccc(C(F)(F)F)cn1
1
CHEMBL482351
COc1ccc2c(c1)CC(C(=O)Nc1ccc(-c3cn[nH]c3)cc1OC)CO2
1
CHEMBL2313117
O=C(Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1cc(Br)ccc1O
0
CHEMBL4205613
Oc1c(CN2CCCC2)cc(Cn2ccc3cc(F)ccc32)c2cccnc12
0
CHEMBL464384
O=C1COc2ccc(NC(=O)C3CCN(c4cccc(F)c4Br)CC3)cc2N1
1
CHEMBL252399
NC(=O)COc1ccc2c(c1)S(=O)(=O)NC(c1c(O)c(-c3cccs3)nn(CC3CCCC3)c1=O)=N2
1
CHEMBL4287425
CCC(CC)O[C@@H]1C=C(C(=O)O)C[C@H](NCc2ccc(Sc3ccccc3)cc2)[C@H]1NC(C)=O
0
CHEMBL3353881
CC(C)(C)c1cc(NC(=O)[C@@H]2CCC(=O)N2c2ccc(C(F)(F)F)cc2)on1
0
CHEMBL4279732
CCCCCOC(=O)[C@H](CC(C)C)NP1(=O)COC(Cn2cnc3c(N)ncnc32)CO1
1
CHEMBL607090
COc1ccc(Oc2cccc(-c3c(C)cnc4c(C(F)(F)F)cccc34)c2)cc1S(C)(=O)=O
0
CHEMBL3126927
COc1ccc2c(c1)N(C)C(=O)CN2c1nc(C)nc2ccccc12
1
CHEMBL4632610
COc1cc2nc3ccc(Nc4ccc(OC(F)(F)F)cc4)cc3c(O)c2cc1F
0
CHEMBL389156
N#CCCCn1c(Cn2c(=O)n(CC3CC3)c3ccncc32)nc2ccccc21
1
CHEMBL4099754
CS(=N)(=O)c1ccc(C(F)(F)F)cc1
0
CHEMBL4241842
COc1ccc(COC(=O)[C@@H]2CCC3=Nc4ccccc4CN32)cc1
1
CHEMBL4473491
FC(F)(F)CC(c1ccccc1)c1c(-c2ccccc2)[nH]c2ccccc12
0
CHEMBL4591440
COc1ccc2[nH]cc(C3CCN(CCCCN4C(=O)CC(c5c[nH]c6ccc(OC)cc56)C4=O)CC3)c2c1
1
CHEMBL3215861
CCCCc1nc2cc(/C=C/C(=O)NO)ccc2n1CCN(CC)CC
0
CHEMBL4634571
C[C@H](NS(=O)(=O)c1ccc(-c2sc(C(=O)NCC(C)(C)O)nc2C(=O)N2CCCC[C@@H]2C)c(Cl)c1Cl)C(F)(F)F
0
CHEMBL1778603
Cn1c(-c2ccccn2)c(C2CCCCC2)c2ccc(C(=O)NC3(C(=O)Nc4ccc(S(N)(=O)=O)cc4)CCC3)cc21
1
CHEMBL1834422
Nc1ccc(Oc2ccc(S(=O)(=O)CC3CS3)cc2)cc1
0
CHEMBL4163870
Cc1nc2c(c(Nc3c[nH]nc3C(=O)Nc3ccc(N4CCNCC4)cc3)n1)CCC2
0
CHEMBL3828065
CC(O)(CS(=O)(=O)c1ccccc1OC(F)(F)F)C(=O)Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1
0
CHEMBL4483554
COc1ccc2[nH]cc(C3CC(=O)N(CCCCN4CCC(c5c[nH]c6ccccc56)CC4)C3=O)c2c1
1
CHEMBL2346737
Cc1nc(C(=O)Nc2ccnc(Cl)n2)c(C)n1-c1ccc(F)cc1
0
CHEMBL518254
O=C(c1cccc2ccccc12)N(CCc1ccc(Cl)cc1)[C@H]1CC[C@H](O)CC1
1
CHEMBL2147093
O=[N+]([O-])c1ccc(C2=NOC(c3ccc(N4CCOCC4)cc3)C2)o1
0
CHEMBL2349545
Cc1cccc(NC(=O)c2nn(C)c(-c3ccncc3)c2C)n1
0
CHEMBL566048
CNS(=O)(=O)c1ccc(CNC(=O)c2ccc(OCCC(F)(F)F)nc2)c(Cl)c1
0
CHEMBL583465
COc1ccc(CCN2C(=O)N(NS(C)(=O)=O)CC2c2ccc(Cl)cc2)cc1
1
CHEMBL4638504
O=P1(c2ccc(C(F)(F)F)cc2)OCCCO1
0
CHEMBL1084309
Fc1ccccc1C(Cc1ccccc1OC(F)F)N1CCNCC1
0
CHEMBL175767
O=C(CN1CCC(N2C(=O)OCc3ccccc32)CC1)Nc1ccc(C2CCCCC2)cc1
1
CHEMBL4574111
Nc1cccc(-c2ccc3nc(-c4cccnc4N)n(-c4ccc(C5(N)CCC5)cc4)c3n2)c1
0
CHEMBL4205429
Cc1ccc(-n2ccc(C(F)(F)F)c2COc2c(F)cc(CCC(=O)O)cc2F)cc1
1
CHEMBL477374
CC(C)C(=O)N(Cc1ccc(Cl)c(Cl)c1Cl)[C@H]1CCNC1
0
CHEMBL535
CCN(CC)CCNC(=O)c1c(C)[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c1C
0
CHEMBL574694
Cc1nn(CCO)c(C)c1Cc1cc(Cl)cc(Cl)c1
0
CHEMBL4572794
COc1ccc(N2CCN(C(=O)Oc3cccc(N4CCOCC4)c3)[C@H](C)C2)cc1
1
CHEMBL4476813
Cc1ccc2c(C(C[N+](=O)[O-])c3cccs3)c(-c3ccc(Cl)cc3)[nH]c2c1
1
CHEMBL3354545
CC(C)(C)c1cc(NC(=O)[C@@H]2CCCCN2C(=O)CC2CCOCC2)no1
0
CHEMBL2035651
O=C(NCCN1CCOCC1)c1ccc(-c2nccc3ccccc23)cc1
0
CHEMBL494207
CNC(=O)[C@@H](NC(=O)n1c(=O)n(CCN2CCOCC2)c2ccccc21)C(C)(C)C
1
CHEMBL4646062
Nc1ncnc2c1c(Oc1cccc(Cl)c1)nn2[C@H]1C[C@H](F)C1
1
CHEMBL3580759
CN1CCN(C(=O)C[C@H](NC(=O)C=Cc2cc(Cl)ccc2-n2cnnn2)c2nc(Cl)c(-c3ccc4nc(O)cc(O)c4c3)[nH]2)CC1
0
CHEMBL2325500
CS(=O)(=O)c1ccc(-c2nnc(SCc3nnc(-c4ccc(Cl)cc4)o3)n2-c2ccccc2Cl)nc1
1
CHEMBL1683887
CNCC1(c2cccc(Cl)c2)CCCCC1
0
CHEMBL4636934
N#Cc1ccnc(Oc2nn(C3CC3)c3ncnc(N)c23)c1
0
CHEMBL3799598
O=C(NCCc1nc(-c2ccccc2)cs1)N1CCCC1
1
CHEMBL4287294
CC(=O)NC[C@H]1CN(c2ccc(-c3ccc(/C=N/N4CCN(C(=O)CO)CC4)cc3)c(F)c2)C(=O)O1
0
CHEMBL214784
SCc1ccc(-c2cccnc2)o1
0
CHEMBL3126760
COc1ccc2c(c1)CCCCN2c1nc(C)nc2ccccc12
1
CHEMBL4647401
CC1(NC(=O)COc2cccc(-c3nc4c(c(Nc5ccc(-c6cn[nH]c6)cc5)n3)CN(C3CCC3)CC4)c2)CC1
0
CHEMBL451887
CC(C)C[C@H](NC(=O)[C@H](CCc1ccccc1)NC(=O)CN1CCOCC1)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CC(C)C)C(=O)[C@@]1(C)CO1
1
CHEMBL560538
O=C(NCCCc1ccccc1)c1cccnc1
0
CHEMBL3421829
CC(=NCCCCN1CCCCC1)Nc1ccnc2cc(Cl)ccc12
0
CHEMBL4288803
CNC(=O)c1c(-c2ccc(F)cc2)oc2nc(NCC(F)(F)F)c(-c3cccc(C(=O)NC(C)(C)C)c3)cc12
0
CHEMBL3759763
CC(CNCCC12CC3CC(CC(C3)C1)C2)Nc1ccnc2cc(Cl)ccc12
0
CHEMBL2385149
CCN1C(=O)C(c2cc(-c3cnn(C)c3)ccc2O)C(=O)N(c2ccccc2)c2cc(C(F)(F)F)ccc21
0
CHEMBL3421830
CC(=NCCCN1CCOCC1)Nc1ccnc2cc(Cl)ccc12
1
CHEMBL520103
COc1cc(-c2cn[nH]c2)ccc1NC(=O)C1COc2ccc(F)cc2C1
1
CHEMBL2179485
CCc1cc(CC)nc(OCCCn2c3c(c4cc(-c5nc(C)no5)ccc42)C(=O)CCC3)n1
1
CHEMBL1780085
COC[C@@H]1C[C@@H](C(=O)NCC2CCOCC2)CN(Cc2nc(-c3ccccc3)oc2C)C1
1
CHEMBL385008
NCc1cc(-c2cccnc2)[nH]n1
0
CHEMBL214990
CSCc1ccc(-c2cccnc2)o1
0
CHEMBL2179509
Cc1noc(-c2ccc3c(c2)c2c(n3CCCOc3ccc(F)c(F)c3)CCCC2)n1
1
CHEMBL566829
N[C@@H](CC(=O)N1CCC[C@H]1c1nc(-c2ncc(F)cc2F)no1)Cc1cc(F)c(F)cc1F
0
CHEMBL4634018
Nc1ncnc2c1c(Oc1cc(C(F)(F)F)ccn1)nn2[C@H]1CC[C@H](O)CC1
0
CHEMBL2069642
CS(=O)(=O)c1ccc(CNC(=O)c2ccc(OCC(F)(F)F)nc2)c(Cl)c1
0
CHEMBL2152424
COC(=O)N[C@@H]1CC[C@@H](n2cnc3cnc4[nH]ccc4c32)C1
0
CHEMBL1289626
Oc1ccc2c(c1)CCN(CCCCc1ccccc1)CC2O
1
CHEMBL1630791
C[C@@H]1CCN(C(=O)CO)C[C@@H]1N(C)c1ncnc2[nH]ccc12
0
CHEMBL2035812
C=CC(=O)NCc1coc(-c2c(N)ncnc2Nc2ccc(OCc3ccccn3)c(F)c2)n1
1

Human & Rat Liver Microsomal Stability

3345 RLM and 6420 HLM compounds were initially collected from the ChEMBL bioactivity database. (HLM ID: 613373, 2367379, and 612558; RLM ID: 613694, 2367428, and 612558) Finally, the RLM stability data set contains 3108 compounds, and the HLM stability data set contains 5902 compounds. For the RLM stability data set, 1542 (49.6%) compounds were classified as stable, and 1566 (50.4%) compounds were classified as unstable, among which the training and test sets contain 2512 and 596 compounds, respectively. The experimental data from the National Center for Advancing Translational Sciences (PubChem AID 1508591) were used as the RLM external set. For the HLM data set, 3799 (64%) compounds were classified as stable, and 2103 (36%) compounds were classified as unstable. In addition, an external set from Liu et al.12 was used to evaluate the predictive power of the HLM model.

The datasets uploaded to our Hugging Face repository are sanitized and reorganized versions. (We have sanitized the molecules from the original paper, using MolVS.)

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load one of the HLM_RLM datasets, e.g.,

>>> HLM = datasets.load_dataset("maomlab/HLM_RLM", name = "HLM")
Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.93k/6.93k [00:00<00:00, 280kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 680k/680k [00:00<00:00, 946kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 925k/925k [00:01<00:00, 634kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 39.7k/39.7k [00:00<00:00, 90.8kB/s]
Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1131/1131 [00:00<00:00, 20405.98 examples/s]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4771/4771 [00:00<00:00, 65495.46 examples/s]
Generating external split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 111/111 [00:00<00:00, 3651.94 examples/s]

and inspecting the loaded dataset

>>> HLM
HLM
DatasetDict({
  test: Dataset({
     features: ['ID','SMILES', 'Y'],
     num_rows: 1131
  })
  train: Dataset({
      features: ['ID','SMILES', 'Y'],
      num_rows: 4771
  }) 
  external: Dataset({
      features: ['ID','SMILES', 'Y'],
      num_rows: 111          
  })
})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the a catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

split_dataset = load_dataset('maomlab/HLM_RLM', name = 'HLM')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y'],
    }})
    
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
    references=split_featurised_dataset["test"]['Y'],
    predictions=preds["cat_boost_classifier::Y"])        

Citation

Chem. Res. Toxicol. 2022, 35, 9, 1614–1624 Publication Date:September 2, 2022 https://doi.org/10.1021/acs.chemrestox.2c00207

Downloads last month
43

Collection including maomlab/HLM_RLM