|
--- |
|
license: mit |
|
task_categories: |
|
- image-classification |
|
- feature-extraction |
|
language: |
|
- en |
|
tags: |
|
- code |
|
pretty_name: Vi-Backbones |
|
size_categories: |
|
- n<1K |
|
--- |
|
|
|
# Dataset Card for "monetjoe/cv_backbones" |
|
This repository consolidates the collection of backbone networks for pre-trained computer vision models available on the PyTorch official website. It mainly includes various Convolutional Neural Networks (CNNs) and Vision Transformer models pre-trained on the ImageNet1K dataset. The entire collection is divided into two subsets, V1 and V2, encompassing multiple classic and advanced versions of visual models. These pre-trained backbone networks provide users with a robust foundation for transfer learning in tasks such as image recognition, object detection, and image segmentation. Simultaneously, it offers a convenient choice for researchers and practitioners to flexibly apply these pre-trained models in different scenarios. |
|
|
|
## Data structure |
|
| ver | type | input_size | url | |
|
| :-----------: | :-----------: | :--------------: | :-------------------------------: | |
|
| backbone name | backbone type | input image size | url of pretrained model .pth file | |
|
|
|
## Maintenance |
|
```bash |
|
git clone [email protected]:datasets/monetjoe/cv_backbones |
|
cd cv_backbones |
|
``` |
|
|
|
## Usage |
|
### ImageNet V1 |
|
```python |
|
from datasets import load_dataset |
|
|
|
backbones = load_dataset("monetjoe/cv_backbones", name="default", split="train") |
|
for weights in backbones: |
|
print(weights) |
|
``` |
|
|
|
### ImageNet V2 |
|
```python |
|
from datasets import load_dataset |
|
|
|
backbones = load_dataset("monetjoe/cv_backbones", name="default", split="test") |
|
for weights in backbones: |
|
print(weights) |
|
``` |
|
|
|
## Param counts of different backbones |
|
### IMAGENET1K_V1 |
|
| Backbone | Params(M) | |
|
| :----------------: | :-------: | |
|
| SqueezeNet1_0 | 1.2 | |
|
| SqueezeNet1_1 | 1.2 | |
|
| ShuffleNet_V2_X0_5 | 1.4 | |
|
| MNASNet0_5 | 2.2 | |
|
| ShuffleNet_V2_X1_0 | 2.3 | |
|
| MobileNet_V3_Small | 2.5 | |
|
| MNASNet0_75 | 3.2 | |
|
| MobileNet_V2 | 3.5 | |
|
| ShuffleNet_V2_X1_5 | 3.5 | |
|
| RegNet_Y_400MF | 4.3 | |
|
| MNASNet1_0 | 4.4 | |
|
| EfficientNet_B0 | 5.3 | |
|
| MobileNet_V3_Large | 5.5 | |
|
| RegNet_X_400MF | 5.5 | |
|
| MNASNet1_3 | 6.3 | |
|
| RegNet_Y_800MF | 6.4 | |
|
| GoogLeNet | 6.6 | |
|
| RegNet_X_800MF | 7.3 | |
|
| ShuffleNet_V2_X2_0 | 7.4 | |
|
| EfficientNet_B1 | 7.8 | |
|
| DenseNet121 | 8 | |
|
| EfficientNet_B2 | 9.1 | |
|
| RegNet_X_1_6GF | 9.2 | |
|
| RegNet_Y_1_6GF | 11.2 | |
|
| ResNet18 | 11.7 | |
|
| EfficientNet_B3 | 12.2 | |
|
| DenseNet169 | 14.1 | |
|
| RegNet_X_3_2GF | 15.3 | |
|
| EfficientNet_B4 | 19.3 | |
|
| RegNet_Y_3_2GF | 19.4 | |
|
| DenseNet201 | 20 | |
|
| EfficientNet_V2_S | 21.5 | |
|
| ResNet34 | 21.8 | |
|
| ResNeXt50_32X4D | 25 | |
|
| ResNet50 | 25.6 | |
|
| Inception_V3 | 27.2 | |
|
| Swin_T | 28.3 | |
|
| Swin_V2_T | 28.4 | |
|
| ConvNeXt_Tiny | 28.6 | |
|
| DenseNet161 | 28.7 | |
|
| EfficientNet_B5 | 30.4 | |
|
| MaxVit_T | 30.9 | |
|
| RegNet_Y_8GF | 39.4 | |
|
| RegNet_X_8GF | 39.6 | |
|
| EfficientNet_B6 | 43 | |
|
| ResNet101 | 44.5 | |
|
| Swin_S | 49.6 | |
|
| Swin_V2_S | 49.7 | |
|
| ConvNeXt_Small | 50.2 | |
|
| EfficientNet_V2_M | 54.1 | |
|
| RegNet_X_16GF | 54.3 | |
|
| ResNet152 | 60.2 | |
|
| AlexNet | 61.1 | |
|
| EfficientNet_B7 | 66.3 | |
|
| Wide_ResNet50_2 | 68.9 | |
|
| ResNeXt101_64X4D | 83.5 | |
|
| RegNet_Y_16GF | 83.6 | |
|
| ViT_B_16 | 86.6 | |
|
| Swin_B | 87.8 | |
|
| Swin_V2_B | 87.9 | |
|
| ViT_B_32 | 88.2 | |
|
| ConvNeXt_Base | 88.6 | |
|
| ResNeXt101_32X8D | 88.8 | |
|
| RegNet_X_32GF | 107.8 | |
|
| EfficientNet_V2_L | 118.5 | |
|
| Wide_ResNet101_2 | 126.9 | |
|
| VGG11_BN | 132.9 | |
|
| VGG11 | 132.9 | |
|
| VGG13 | 133 | |
|
| VGG13_BN | 133.1 | |
|
| VGG16_BN | 138.4 | |
|
| VGG16 | 138.4 | |
|
| VGG19_BN | 143.7 | |
|
| VGG19 | 143.7 | |
|
| RegNet_Y_32GF | 145 | |
|
| ConvNeXt_Large | 197.8 | |
|
| ViT_L_16 | 304.3 | |
|
| ViT_L_32 | 306.5 | |
|
|
|
### IMAGENET1K_V2 |
|
| Backbone | Params(M) | |
|
| :----------------: | :-------: | |
|
| MobileNet_V2 | 3.5 | |
|
| RegNet_Y_400MF | 4.3 | |
|
| MobileNet_V3_Large | 5.5 | |
|
| RegNet_X_400MF | 5.5 | |
|
| RegNet_Y_800MF | 6.4 | |
|
| RegNet_X_800MF | 7.3 | |
|
| EfficientNet_B1 | 7.8 | |
|
| RegNet_X_1_6GF | 9.2 | |
|
| RegNet_Y_1_6GF | 11.2 | |
|
| RegNet_X_3_2GF | 15.3 | |
|
| RegNet_Y_3_2GF | 19.4 | |
|
| ResNeXt50_32X4D | 25 | |
|
| ResNet50 | 25.6 | |
|
| RegNet_Y_8GF | 39.4 | |
|
| RegNet_X_8GF | 39.6 | |
|
| ResNet101 | 44.5 | |
|
| RegNet_X_16GF | 54.3 | |
|
| ResNet152 | 60.2 | |
|
| Wide_ResNet50_2 | 68.9 | |
|
| RegNet_Y_16GF | 83.6 | |
|
| ResNeXt101_32X8D | 88.8 | |
|
| RegNet_X_32GF | 107.8 | |
|
| Wide_ResNet101_2 | 126.9 | |
|
| RegNet_Y_32GF | 145 | |
|
|
|
## Mirror |
|
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones> |
|
|
|
## Reference |
|
[1] <https://pytorch.org/vision/main/_modules><br> |
|
[2] <https://pytorch.org/vision/main/models.html> |