--- license: mit task_categories: - image-classification - feature-extraction language: - en tags: - code pretty_name: Vi-Backbones size_categories: - n<1K --- # Dataset Card for "monetjoe/cv_backbones" This repository consolidates the collection of backbone networks for pre-trained computer vision models available on the PyTorch official website. It mainly includes various Convolutional Neural Networks (CNNs) and Vision Transformer models pre-trained on the ImageNet1K dataset. The entire collection is divided into two subsets, V1 and V2, encompassing multiple classic and advanced versions of visual models. These pre-trained backbone networks provide users with a robust foundation for transfer learning in tasks such as image recognition, object detection, and image segmentation. Simultaneously, it offers a convenient choice for researchers and practitioners to flexibly apply these pre-trained models in different scenarios. ## Data structure | ver | type | input_size | url | | :-----------: | :-----------: | :--------------: | :-------------------------------: | | backbone name | backbone type | input image size | url of pretrained model .pth file | ## Maintenance ```bash git clone git@hf.co:datasets/monetjoe/cv_backbones cd cv_backbones ``` ## Usage ### ImageNet V1 ```python from datasets import load_dataset backbones = load_dataset("monetjoe/cv_backbones", name="default", split="train") for weights in backbones: print(weights) ``` ### ImageNet V2 ```python from datasets import load_dataset backbones = load_dataset("monetjoe/cv_backbones", name="default", split="test") for weights in backbones: print(weights) ``` ## Param counts of different backbones ### IMAGENET1K_V1 | Backbone | Params(M) | | :----------------: | :-------: | | SqueezeNet1_0 | 1.2 | | SqueezeNet1_1 | 1.2 | | ShuffleNet_V2_X0_5 | 1.4 | | MNASNet0_5 | 2.2 | | ShuffleNet_V2_X1_0 | 2.3 | | MobileNet_V3_Small | 2.5 | | MNASNet0_75 | 3.2 | | MobileNet_V2 | 3.5 | | ShuffleNet_V2_X1_5 | 3.5 | | RegNet_Y_400MF | 4.3 | | MNASNet1_0 | 4.4 | | EfficientNet_B0 | 5.3 | | MobileNet_V3_Large | 5.5 | | RegNet_X_400MF | 5.5 | | MNASNet1_3 | 6.3 | | RegNet_Y_800MF | 6.4 | | GoogLeNet | 6.6 | | RegNet_X_800MF | 7.3 | | ShuffleNet_V2_X2_0 | 7.4 | | EfficientNet_B1 | 7.8 | | DenseNet121 | 8 | | EfficientNet_B2 | 9.1 | | RegNet_X_1_6GF | 9.2 | | RegNet_Y_1_6GF | 11.2 | | ResNet18 | 11.7 | | EfficientNet_B3 | 12.2 | | DenseNet169 | 14.1 | | RegNet_X_3_2GF | 15.3 | | EfficientNet_B4 | 19.3 | | RegNet_Y_3_2GF | 19.4 | | DenseNet201 | 20 | | EfficientNet_V2_S | 21.5 | | ResNet34 | 21.8 | | ResNeXt50_32X4D | 25 | | ResNet50 | 25.6 | | Inception_V3 | 27.2 | | Swin_T | 28.3 | | Swin_V2_T | 28.4 | | ConvNeXt_Tiny | 28.6 | | DenseNet161 | 28.7 | | EfficientNet_B5 | 30.4 | | MaxVit_T | 30.9 | | RegNet_Y_8GF | 39.4 | | RegNet_X_8GF | 39.6 | | EfficientNet_B6 | 43 | | ResNet101 | 44.5 | | Swin_S | 49.6 | | Swin_V2_S | 49.7 | | ConvNeXt_Small | 50.2 | | EfficientNet_V2_M | 54.1 | | RegNet_X_16GF | 54.3 | | ResNet152 | 60.2 | | AlexNet | 61.1 | | EfficientNet_B7 | 66.3 | | Wide_ResNet50_2 | 68.9 | | ResNeXt101_64X4D | 83.5 | | RegNet_Y_16GF | 83.6 | | ViT_B_16 | 86.6 | | Swin_B | 87.8 | | Swin_V2_B | 87.9 | | ViT_B_32 | 88.2 | | ConvNeXt_Base | 88.6 | | ResNeXt101_32X8D | 88.8 | | RegNet_X_32GF | 107.8 | | EfficientNet_V2_L | 118.5 | | Wide_ResNet101_2 | 126.9 | | VGG11_BN | 132.9 | | VGG11 | 132.9 | | VGG13 | 133 | | VGG13_BN | 133.1 | | VGG16_BN | 138.4 | | VGG16 | 138.4 | | VGG19_BN | 143.7 | | VGG19 | 143.7 | | RegNet_Y_32GF | 145 | | ConvNeXt_Large | 197.8 | | ViT_L_16 | 304.3 | | ViT_L_32 | 306.5 | ### IMAGENET1K_V2 | Backbone | Params(M) | | :----------------: | :-------: | | MobileNet_V2 | 3.5 | | RegNet_Y_400MF | 4.3 | | MobileNet_V3_Large | 5.5 | | RegNet_X_400MF | 5.5 | | RegNet_Y_800MF | 6.4 | | RegNet_X_800MF | 7.3 | | EfficientNet_B1 | 7.8 | | RegNet_X_1_6GF | 9.2 | | RegNet_Y_1_6GF | 11.2 | | RegNet_X_3_2GF | 15.3 | | RegNet_Y_3_2GF | 19.4 | | ResNeXt50_32X4D | 25 | | ResNet50 | 25.6 | | RegNet_Y_8GF | 39.4 | | RegNet_X_8GF | 39.6 | | ResNet101 | 44.5 | | RegNet_X_16GF | 54.3 | | ResNet152 | 60.2 | | Wide_ResNet50_2 | 68.9 | | RegNet_Y_16GF | 83.6 | | ResNeXt101_32X8D | 88.8 | | RegNet_X_32GF | 107.8 | | Wide_ResNet101_2 | 126.9 | | RegNet_Y_32GF | 145 | ## Mirror ## Reference [1]
[2]