cv_backbones / README.md
admin
Update README.md
4d780cd
|
raw
history blame
5.68 kB
metadata
license: mit
task_categories:
  - image-classification
  - feature-extraction
language:
  - en
tags:
  - code
pretty_name: Vi-Backbones
size_categories:
  - n<1K

Dataset Card for "monetjoe/cv_backbones"

This repository consolidates the collection of backbone networks for pre-trained computer vision models available on the PyTorch official website. It mainly includes various Convolutional Neural Networks (CNNs) and Vision Transformer models pre-trained on the ImageNet1K dataset. The entire collection is divided into two subsets, V1 and V2, encompassing multiple classic and advanced versions of visual models. These pre-trained backbone networks provide users with a robust foundation for transfer learning in tasks such as image recognition, object detection, and image segmentation. Simultaneously, it offers a convenient choice for researchers and practitioners to flexibly apply these pre-trained models in different scenarios.

Data structure

ver type input_size url
backbone name backbone type input image size url of pretrained model .pth file

Maintenance

git clone [email protected]:datasets/monetjoe/cv_backbones
cd cv_backbones

Usage

ImageNet V1

from datasets import load_dataset

backbones = load_dataset("monetjoe/cv_backbones", name="default", split="train")
for weights in backbones:
    print(weights)

ImageNet V2

from datasets import load_dataset

backbones = load_dataset("monetjoe/cv_backbones", name="default", split="test")
for weights in backbones:
    print(weights)

Param counts of different backbones

IMAGENET1K_V1

Backbone Params(M)
SqueezeNet1_0 1.2
SqueezeNet1_1 1.2
ShuffleNet_V2_X0_5 1.4
MNASNet0_5 2.2
ShuffleNet_V2_X1_0 2.3
MobileNet_V3_Small 2.5
MNASNet0_75 3.2
MobileNet_V2 3.5
ShuffleNet_V2_X1_5 3.5
RegNet_Y_400MF 4.3
MNASNet1_0 4.4
EfficientNet_B0 5.3
MobileNet_V3_Large 5.5
RegNet_X_400MF 5.5
MNASNet1_3 6.3
RegNet_Y_800MF 6.4
GoogLeNet 6.6
RegNet_X_800MF 7.3
ShuffleNet_V2_X2_0 7.4
EfficientNet_B1 7.8
DenseNet121 8
EfficientNet_B2 9.1
RegNet_X_1_6GF 9.2
RegNet_Y_1_6GF 11.2
ResNet18 11.7
EfficientNet_B3 12.2
DenseNet169 14.1
RegNet_X_3_2GF 15.3
EfficientNet_B4 19.3
RegNet_Y_3_2GF 19.4
DenseNet201 20
EfficientNet_V2_S 21.5
ResNet34 21.8
ResNeXt50_32X4D 25
ResNet50 25.6
Inception_V3 27.2
Swin_T 28.3
Swin_V2_T 28.4
ConvNeXt_Tiny 28.6
DenseNet161 28.7
EfficientNet_B5 30.4
MaxVit_T 30.9
RegNet_Y_8GF 39.4
RegNet_X_8GF 39.6
EfficientNet_B6 43
ResNet101 44.5
Swin_S 49.6
Swin_V2_S 49.7
ConvNeXt_Small 50.2
EfficientNet_V2_M 54.1
RegNet_X_16GF 54.3
ResNet152 60.2
AlexNet 61.1
EfficientNet_B7 66.3
Wide_ResNet50_2 68.9
ResNeXt101_64X4D 83.5
RegNet_Y_16GF 83.6
ViT_B_16 86.6
Swin_B 87.8
Swin_V2_B 87.9
ViT_B_32 88.2
ConvNeXt_Base 88.6
ResNeXt101_32X8D 88.8
RegNet_X_32GF 107.8
EfficientNet_V2_L 118.5
Wide_ResNet101_2 126.9
VGG11_BN 132.9
VGG11 132.9
VGG13 133
VGG13_BN 133.1
VGG16_BN 138.4
VGG16 138.4
VGG19_BN 143.7
VGG19 143.7
RegNet_Y_32GF 145
ConvNeXt_Large 197.8
ViT_L_16 304.3
ViT_L_32 306.5

IMAGENET1K_V2

Backbone Params(M)
MobileNet_V2 3.5
RegNet_Y_400MF 4.3
MobileNet_V3_Large 5.5
RegNet_X_400MF 5.5
RegNet_Y_800MF 6.4
RegNet_X_800MF 7.3
EfficientNet_B1 7.8
RegNet_X_1_6GF 9.2
RegNet_Y_1_6GF 11.2
RegNet_X_3_2GF 15.3
RegNet_Y_3_2GF 19.4
ResNeXt50_32X4D 25
ResNet50 25.6
RegNet_Y_8GF 39.4
RegNet_X_8GF 39.6
ResNet101 44.5
RegNet_X_16GF 54.3
ResNet152 60.2
Wide_ResNet50_2 68.9
RegNet_Y_16GF 83.6
ResNeXt101_32X8D 88.8
RegNet_X_32GF 107.8
Wide_ResNet101_2 126.9
RegNet_Y_32GF 145

Mirror

https://www.modelscope.cn/datasets/monetjoe/cv_backbones

Reference

[1] https://pytorch.org/vision/main/_modules
[2] https://pytorch.org/vision/main/models.html