File size: 5,682 Bytes
17fbb28
 
c51087c
 
c880bb4
c51087c
 
 
 
70e3f22
c51087c
 
17fbb28
18bce8b
70b7d54
a8c98ff
 
4d780cd
21c63d6
 
 
4b388ed
b9a5ff6
 
70b7d54
3482f7b
b9a5ff6
 
18bce8b
3482f7b
e09029c
18bce8b
 
70b7d54
 
52bbeff
a60b344
 
3482f7b
 
 
 
 
 
 
 
 
70b7d54
da3654b
fe78cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3654b
 
fe78cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce78729
 
 
 
5782f7d
254257c
596dd4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: mit
task_categories:
- image-classification
- feature-extraction
language:
- en
tags:
- code
pretty_name: Vi-Backbones
size_categories:
- n<1K
---

# Dataset Card for "monetjoe/cv_backbones"
This repository consolidates the collection of backbone networks for pre-trained computer vision models available on the PyTorch official website. It mainly includes various Convolutional Neural Networks (CNNs) and Vision Transformer models pre-trained on the ImageNet1K dataset. The entire collection is divided into two subsets, V1 and V2, encompassing multiple classic and advanced versions of visual models. These pre-trained backbone networks provide users with a robust foundation for transfer learning in tasks such as image recognition, object detection, and image segmentation. Simultaneously, it offers a convenient choice for researchers and practitioners to flexibly apply these pre-trained models in different scenarios.

## Data structure
|      ver      |     type      |    input_size    |                url                |
| :-----------: | :-----------: | :--------------: | :-------------------------------: |
| backbone name | backbone type | input image size | url of pretrained model .pth file |

## Maintenance
```bash
git clone [email protected]:datasets/monetjoe/cv_backbones
cd cv_backbones
```

## Usage
### ImageNet V1
```python
from datasets import load_dataset

backbones = load_dataset("monetjoe/cv_backbones", name="default", split="train")
for weights in backbones:
    print(weights)
```

### ImageNet V2
```python
from datasets import load_dataset

backbones = load_dataset("monetjoe/cv_backbones", name="default", split="test")
for weights in backbones:
    print(weights)
```

## Param counts of different backbones
### IMAGENET1K_V1
|      Backbone      | Params(M) |
| :----------------: | :-------: |
|   SqueezeNet1_0    |    1.2    |
|   SqueezeNet1_1    |    1.2    |
| ShuffleNet_V2_X0_5 |    1.4    |
|     MNASNet0_5     |    2.2    |
| ShuffleNet_V2_X1_0 |    2.3    |
| MobileNet_V3_Small |    2.5    |
|    MNASNet0_75     |    3.2    |
|    MobileNet_V2    |    3.5    |
| ShuffleNet_V2_X1_5 |    3.5    |
|   RegNet_Y_400MF   |    4.3    |
|     MNASNet1_0     |    4.4    |
|  EfficientNet_B0   |    5.3    |
| MobileNet_V3_Large |    5.5    |
|   RegNet_X_400MF   |    5.5    |
|     MNASNet1_3     |    6.3    |
|   RegNet_Y_800MF   |    6.4    |
|     GoogLeNet      |    6.6    |
|   RegNet_X_800MF   |    7.3    |
| ShuffleNet_V2_X2_0 |    7.4    |
|  EfficientNet_B1   |    7.8    |
|    DenseNet121     |     8     |
|  EfficientNet_B2   |    9.1    |
|   RegNet_X_1_6GF   |    9.2    |
|   RegNet_Y_1_6GF   |   11.2    |
|      ResNet18      |   11.7    |
|  EfficientNet_B3   |   12.2    |
|    DenseNet169     |   14.1    |
|   RegNet_X_3_2GF   |   15.3    |
|  EfficientNet_B4   |   19.3    |
|   RegNet_Y_3_2GF   |   19.4    |
|    DenseNet201     |    20     |
| EfficientNet_V2_S  |   21.5    |
|      ResNet34      |   21.8    |
|  ResNeXt50_32X4D   |    25     |
|      ResNet50      |   25.6    |
|    Inception_V3    |   27.2    |
|       Swin_T       |   28.3    |
|     Swin_V2_T      |   28.4    |
|   ConvNeXt_Tiny    |   28.6    |
|    DenseNet161     |   28.7    |
|  EfficientNet_B5   |   30.4    |
|      MaxVit_T      |   30.9    |
|    RegNet_Y_8GF    |   39.4    |
|    RegNet_X_8GF    |   39.6    |
|  EfficientNet_B6   |    43     |
|     ResNet101      |   44.5    |
|       Swin_S       |   49.6    |
|     Swin_V2_S      |   49.7    |
|   ConvNeXt_Small   |   50.2    |
| EfficientNet_V2_M  |   54.1    |
|   RegNet_X_16GF    |   54.3    |
|     ResNet152      |   60.2    |
|      AlexNet       |   61.1    |
|  EfficientNet_B7   |   66.3    |
|  Wide_ResNet50_2   |   68.9    |
|  ResNeXt101_64X4D  |   83.5    |
|   RegNet_Y_16GF    |   83.6    |
|      ViT_B_16      |   86.6    |
|       Swin_B       |   87.8    |
|     Swin_V2_B      |   87.9    |
|      ViT_B_32      |   88.2    |
|   ConvNeXt_Base    |   88.6    |
|  ResNeXt101_32X8D  |   88.8    |
|   RegNet_X_32GF    |   107.8   |
| EfficientNet_V2_L  |   118.5   |
|  Wide_ResNet101_2  |   126.9   |
|      VGG11_BN      |   132.9   |
|       VGG11        |   132.9   |
|       VGG13        |    133    |
|      VGG13_BN      |   133.1   |
|      VGG16_BN      |   138.4   |
|       VGG16        |   138.4   |
|      VGG19_BN      |   143.7   |
|       VGG19        |   143.7   |
|   RegNet_Y_32GF    |    145    |
|   ConvNeXt_Large   |   197.8   |
|      ViT_L_16      |   304.3   |
|      ViT_L_32      |   306.5   |

### IMAGENET1K_V2
|      Backbone      | Params(M) |
| :----------------: | :-------: |
|    MobileNet_V2    |    3.5    |
|   RegNet_Y_400MF   |    4.3    |
| MobileNet_V3_Large |    5.5    |
|   RegNet_X_400MF   |    5.5    |
|   RegNet_Y_800MF   |    6.4    |
|   RegNet_X_800MF   |    7.3    |
|  EfficientNet_B1   |    7.8    |
|   RegNet_X_1_6GF   |    9.2    |
|   RegNet_Y_1_6GF   |   11.2    |
|   RegNet_X_3_2GF   |   15.3    |
|   RegNet_Y_3_2GF   |   19.4    |
|  ResNeXt50_32X4D   |    25     |
|      ResNet50      |   25.6    |
|    RegNet_Y_8GF    |   39.4    |
|    RegNet_X_8GF    |   39.6    |
|     ResNet101      |   44.5    |
|   RegNet_X_16GF    |   54.3    |
|     ResNet152      |   60.2    |
|  Wide_ResNet50_2   |   68.9    |
|   RegNet_Y_16GF    |   83.6    |
|  ResNeXt101_32X8D  |   88.8    |
|   RegNet_X_32GF    |   107.8   |
|  Wide_ResNet101_2  |   126.9   |
|   RegNet_Y_32GF    |    145    |

## Mirror
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones>

## Reference
[1] <https://pytorch.org/vision/main/_modules><br>
[2] <https://pytorch.org/vision/main/models.html>