metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19598
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: soi tỷ lệ Southampton vs Nottingham (21h00, 24/8), vòng 2 Ngoại hạng Anh
sentences:
- nhận định Oakleigh Cannons vs Macarthur
- dự đoán Mallorca vs Athletic Bilbao
- soi kèo Southampton vs Nottingham Forest
- source_sentence: Melbourne Victory vs Macarthur 12h00 ngày 3/11 (VĐQG Australia 2024/25).
sentences:
- tỷ lệ Tijuana vs Leon
- 'Melbourne Victory vs Brisbane Roar '
- Hải Phòng vs SHB Đà Nẵng
- source_sentence: Banfield vs Estudiantes 4h00 ngày 8/10 (VĐQG Argentina 2024).
sentences:
- arsenal vs psg
- Shandong Luneng vs Qingdaoyangcheng
- 'Boca Juniors vs River Plate '
- source_sentence: 'St Pauli vs Bayern Munich (21h30 ngày 9/11): Khó có bất ngờ.'
sentences:
- st pauli vs bayern munich
- Seattle Sounders vs Houston Dynamo
- kyrgyzstan vs triều tiên
- source_sentence: 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.'
sentences:
- cruz azul vs juarez
- Real Madrid vs Barcelona
- El Salvador vs Montserrat
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: sport query title dev
type: sport_query_title_dev
metrics:
- type: cosine_accuracy
value: 0.9943877551020408
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6410836577415466
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9943269726663229
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6107593178749084
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9958677685950413
name: Cosine Precision
- type: cosine_recall
value: 0.9927909371781668
name: Cosine Recall
- type: cosine_ap
value: 0.9995956398472251
name: Cosine Ap
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Tam1032/MiniLM6-v2-sport")
# Run inference
sentences = [
'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.',
'Real Madrid vs Barcelona',
'El Salvador vs Montserrat',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
sport_query_title_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9944 |
cosine_accuracy_threshold | 0.6411 |
cosine_f1 | 0.9943 |
cosine_f1_threshold | 0.6108 |
cosine_precision | 0.9959 |
cosine_recall | 0.9928 |
cosine_ap | 0.9996 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 19,598 training samples
- Columns:
hypothesis
,premise
, andlabel
- Approximate statistics based on the first 1000 samples:
hypothesis premise label type string string int details - min: 12 tokens
- mean: 27.44 tokens
- max: 37 tokens
- min: 5 tokens
- mean: 9.63 tokens
- max: 55 tokens
- 0: ~50.20%
- 1: ~49.80%
- Samples:
hypothesis premise label bóng đá Las Palmas vs Girona, 23h30 ngày 26/10: Trừng phạt chủ nhà.
Las Palmas vs Girona
1
Seattle Sounders vs Houston Dynamo 9h30 ngày 29/9 (Nhà nghề Mỹ 2024).
dự đoán Seattle Sounders vs Houston Dynamo
1
bóng đá Tây Ban Nha vs Đan Mạch, 01h45 ngày 13/10: Khuất phục ‘lính chì’.
bóng đá Tây Ban Nha vs Đan Mạch
1
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 19,598 evaluation samples
- Columns:
hypothesis
,premise
, andlabel
- Approximate statistics based on the first 1000 samples:
hypothesis premise label type string string int details - min: 12 tokens
- mean: 27.15 tokens
- max: 40 tokens
- min: 4 tokens
- mean: 9.55 tokens
- max: 40 tokens
- 0: ~51.40%
- 1: ~48.60%
- Samples:
hypothesis premise label Hải Phòng vs CAHN (19h15 ngày 15/9): Điểm tựa sân nhà.
kết quả Hải Phòng vs CAHN
1
Kuwait vs Jordan 1h15 ngày 20/11 (Vòng loại World Cup 2026).
Kuwait vs Iraq
0
bóng đá Parma vs Empoli 18h30 ngày 27/10 (Serie A 2024/25).
nhận định Parma vs Empoli
1
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sport_query_title_dev_cosine_ap |
---|---|---|---|---|
1.0 | 1103 | - | 0.1376 | 0.9991 |
1.4506 | 1600 | 0.3994 | - | - |
2.0 | 2206 | - | 0.0693 | 0.9994 |
2.9012 | 3200 | 0.0442 | - | - |
3.0 | 3309 | - | 0.0534 | 0.9996 |
Framework Versions
- Python: 3.11.7
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}