MiniLM6-v2-sport / README.md
Tam1032's picture
Add new SentenceTransformer model
b90da1e verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:19598
  - loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: soi tỷ lệ Southampton vs Nottingham (21h00, 24/8), vòng 2 Ngoại hạng Anh
    sentences:
      - nhận định Oakleigh Cannons vs Macarthur
      - dự đoán Mallorca vs Athletic Bilbao
      - soi kèo Southampton vs Nottingham Forest
  - source_sentence: Melbourne Victory vs Macarthur 12h00 ngày 3/11 (VĐQG Australia 2024/25).
    sentences:
      - tỷ lệ Tijuana vs Leon
      - 'Melbourne Victory vs Brisbane Roar  '
      - Hải Phòng vs SHB Đà Nẵng
  - source_sentence: Banfield vs Estudiantes 4h00 ngày 8/10 (VĐQG Argentina 2024).
    sentences:
      - arsenal vs psg
      - Shandong Luneng vs Qingdaoyangcheng
      - 'Boca Juniors vs River Plate  '
  - source_sentence: 'St Pauli vs Bayern Munich (21h30 ngày 9/11): Khó có bất ngờ.'
    sentences:
      - st pauli vs bayern munich
      - Seattle Sounders vs Houston Dynamo
      - kyrgyzstan vs triều tiên
  - source_sentence: 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.'
    sentences:
      - cruz azul vs juarez
      - Real Madrid vs Barcelona
      - El Salvador vs Montserrat
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: sport query title dev
          type: sport_query_title_dev
        metrics:
          - type: cosine_accuracy
            value: 0.9943877551020408
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6410836577415466
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9943269726663229
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6107593178749084
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9958677685950413
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9927909371781668
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9995956398472251
            name: Cosine Ap

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Tam1032/MiniLM6-v2-sport")
# Run inference
sentences = [
    'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.',
    'Real Madrid vs Barcelona',
    'El Salvador vs Montserrat',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9944
cosine_accuracy_threshold 0.6411
cosine_f1 0.9943
cosine_f1_threshold 0.6108
cosine_precision 0.9959
cosine_recall 0.9928
cosine_ap 0.9996

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 19,598 training samples
  • Columns: hypothesis, premise, and label
  • Approximate statistics based on the first 1000 samples:
    hypothesis premise label
    type string string int
    details
    • min: 12 tokens
    • mean: 27.44 tokens
    • max: 37 tokens
    • min: 5 tokens
    • mean: 9.63 tokens
    • max: 55 tokens
    • 0: ~50.20%
    • 1: ~49.80%
  • Samples:
    hypothesis premise label
    bóng đá Las Palmas vs Girona, 23h30 ngày 26/10: Trừng phạt chủ nhà. Las Palmas vs Girona 1
    Seattle Sounders vs Houston Dynamo 9h30 ngày 29/9 (Nhà nghề Mỹ 2024). dự đoán Seattle Sounders vs Houston Dynamo 1
    bóng đá Tây Ban Nha vs Đan Mạch, 01h45 ngày 13/10: Khuất phục ‘lính chì’. bóng đá Tây Ban Nha vs Đan Mạch 1
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 19,598 evaluation samples
  • Columns: hypothesis, premise, and label
  • Approximate statistics based on the first 1000 samples:
    hypothesis premise label
    type string string int
    details
    • min: 12 tokens
    • mean: 27.15 tokens
    • max: 40 tokens
    • min: 4 tokens
    • mean: 9.55 tokens
    • max: 40 tokens
    • 0: ~51.40%
    • 1: ~48.60%
  • Samples:
    hypothesis premise label
    Hải Phòng vs CAHN (19h15 ngày 15/9): Điểm tựa sân nhà. kết quả Hải Phòng vs CAHN 1
    Kuwait vs Jordan 1h15 ngày 20/11 (Vòng loại World Cup 2026). Kuwait vs Iraq 0
    bóng đá Parma vs Empoli 18h30 ngày 27/10 (Serie A 2024/25). nhận định Parma vs Empoli 1
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sport_query_title_dev_cosine_ap
1.0 1103 - 0.1376 0.9991
1.4506 1600 0.3994 - -
2.0 2206 - 0.0693 0.9994
2.9012 3200 0.0442 - -
3.0 3309 - 0.0534 0.9996

Framework Versions

  • Python: 3.11.7
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}