File size: 16,358 Bytes
b90da1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19598
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: soi tỷ lệ Southampton vs Nottingham (21h00, 24/8), vòng 2 Ngoại
hạng Anh
sentences:
- nhận định Oakleigh Cannons vs Macarthur
- dự đoán Mallorca vs Athletic Bilbao
- soi kèo Southampton vs Nottingham Forest
- source_sentence: Melbourne Victory vs Macarthur 12h00 ngày 3/11 (VĐQG Australia
2024/25).
sentences:
- tỷ lệ Tijuana vs Leon
- 'Melbourne Victory vs Brisbane Roar '
- Hải Phòng vs SHB Đà Nẵng
- source_sentence: Banfield vs Estudiantes 4h00 ngày 8/10 (VĐQG Argentina 2024).
sentences:
- arsenal vs psg
- Shandong Luneng vs Qingdaoyangcheng
- 'Boca Juniors vs River Plate '
- source_sentence: 'St Pauli vs Bayern Munich (21h30 ngày 9/11): Khó có bất ngờ.'
sentences:
- st pauli vs bayern munich
- Seattle Sounders vs Houston Dynamo
- kyrgyzstan vs triều tiên
- source_sentence: 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.'
sentences:
- cruz azul vs juarez
- Real Madrid vs Barcelona
- El Salvador vs Montserrat
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: sport query title dev
type: sport_query_title_dev
metrics:
- type: cosine_accuracy
value: 0.9943877551020408
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6410836577415466
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9943269726663229
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6107593178749084
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9958677685950413
name: Cosine Precision
- type: cosine_recall
value: 0.9927909371781668
name: Cosine Recall
- type: cosine_ap
value: 0.9995956398472251
name: Cosine Ap
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Tam1032/MiniLM6-v2-sport")
# Run inference
sentences = [
'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.',
'Real Madrid vs Barcelona',
'El Salvador vs Montserrat',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `sport_query_title_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.9944 |
| cosine_accuracy_threshold | 0.6411 |
| cosine_f1 | 0.9943 |
| cosine_f1_threshold | 0.6108 |
| cosine_precision | 0.9959 |
| cosine_recall | 0.9928 |
| **cosine_ap** | **0.9996** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 19,598 training samples
* Columns: <code>hypothesis</code>, <code>premise</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | hypothesis | premise | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 12 tokens</li><li>mean: 27.44 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.63 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~50.20%</li><li>1: ~49.80%</li></ul> |
* Samples:
| hypothesis | premise | label |
|:---------------------------------------------------------------------------------------|:--------------------------------------------------------|:---------------|
| <code>bóng đá Las Palmas vs Girona, 23h30 ngày 26/10: Trừng phạt chủ nhà.</code> | <code>Las Palmas vs Girona</code> | <code>1</code> |
| <code>Seattle Sounders vs Houston Dynamo 9h30 ngày 29/9 (Nhà nghề Mỹ 2024).</code> | <code>dự đoán Seattle Sounders vs Houston Dynamo</code> | <code>1</code> |
| <code>bóng đá Tây Ban Nha vs Đan Mạch, 01h45 ngày 13/10: Khuất phục ‘lính chì’.</code> | <code>bóng đá Tây Ban Nha vs Đan Mạch</code> | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 19,598 evaluation samples
* Columns: <code>hypothesis</code>, <code>premise</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | hypothesis | premise | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 12 tokens</li><li>mean: 27.15 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.55 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>1: ~48.60%</li></ul> |
* Samples:
| hypothesis | premise | label |
|:--------------------------------------------------------------------------|:---------------------------------------|:---------------|
| <code>Hải Phòng vs CAHN (19h15 ngày 15/9): Điểm tựa sân nhà.</code> | <code>kết quả Hải Phòng vs CAHN</code> | <code>1</code> |
| <code>Kuwait vs Jordan 1h15 ngày 20/11 (Vòng loại World Cup 2026).</code> | <code>Kuwait vs Iraq</code> | <code>0</code> |
| <code>bóng đá Parma vs Empoli 18h30 ngày 27/10 (Serie A 2024/25).</code> | <code>nhận định Parma vs Empoli</code> | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | sport_query_title_dev_cosine_ap |
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|
| 1.0 | 1103 | - | 0.1376 | 0.9991 |
| 1.4506 | 1600 | 0.3994 | - | - |
| 2.0 | 2206 | - | 0.0693 | 0.9994 |
| 2.9012 | 3200 | 0.0442 | - | - |
| 3.0 | 3309 | - | 0.0534 | 0.9996 |
### Framework Versions
- Python: 3.11.7
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |