---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:19598
- loss:CoSENTLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: soi tỷ lệ Southampton vs Nottingham (21h00, 24/8), vòng 2 Ngoại
hạng Anh
sentences:
- nhận định Oakleigh Cannons vs Macarthur
- dự đoán Mallorca vs Athletic Bilbao
- soi kèo Southampton vs Nottingham Forest
- source_sentence: Melbourne Victory vs Macarthur 12h00 ngày 3/11 (VĐQG Australia
2024/25).
sentences:
- tỷ lệ Tijuana vs Leon
- 'Melbourne Victory vs Brisbane Roar '
- Hải Phòng vs SHB Đà Nẵng
- source_sentence: Banfield vs Estudiantes 4h00 ngày 8/10 (VĐQG Argentina 2024).
sentences:
- arsenal vs psg
- Shandong Luneng vs Qingdaoyangcheng
- 'Boca Juniors vs River Plate '
- source_sentence: 'St Pauli vs Bayern Munich (21h30 ngày 9/11): Khó có bất ngờ.'
sentences:
- st pauli vs bayern munich
- Seattle Sounders vs Houston Dynamo
- kyrgyzstan vs triều tiên
- source_sentence: 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.'
sentences:
- cruz azul vs juarez
- Real Madrid vs Barcelona
- El Salvador vs Montserrat
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: sport query title dev
type: sport_query_title_dev
metrics:
- type: cosine_accuracy
value: 0.9943877551020408
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6410836577415466
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9943269726663229
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6107593178749084
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9958677685950413
name: Cosine Precision
- type: cosine_recall
value: 0.9927909371781668
name: Cosine Recall
- type: cosine_ap
value: 0.9995956398472251
name: Cosine Ap
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Tam1032/MiniLM6-v2-sport")
# Run inference
sentences = [
'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.',
'Real Madrid vs Barcelona',
'El Salvador vs Montserrat',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `sport_query_title_dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.9944 |
| cosine_accuracy_threshold | 0.6411 |
| cosine_f1 | 0.9943 |
| cosine_f1_threshold | 0.6108 |
| cosine_precision | 0.9959 |
| cosine_recall | 0.9928 |
| **cosine_ap** | **0.9996** |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 19,598 training samples
* Columns: hypothesis
, premise
, and label
* Approximate statistics based on the first 1000 samples:
| | hypothesis | premise | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
bóng đá Las Palmas vs Girona, 23h30 ngày 26/10: Trừng phạt chủ nhà.
| Las Palmas vs Girona
| 1
|
| Seattle Sounders vs Houston Dynamo 9h30 ngày 29/9 (Nhà nghề Mỹ 2024).
| dự đoán Seattle Sounders vs Houston Dynamo
| 1
|
| bóng đá Tây Ban Nha vs Đan Mạch, 01h45 ngày 13/10: Khuất phục ‘lính chì’.
| bóng đá Tây Ban Nha vs Đan Mạch
| 1
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 19,598 evaluation samples
* Columns: hypothesis
, premise
, and label
* Approximate statistics based on the first 1000 samples:
| | hypothesis | premise | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | Hải Phòng vs CAHN (19h15 ngày 15/9): Điểm tựa sân nhà.
| kết quả Hải Phòng vs CAHN
| 1
|
| Kuwait vs Jordan 1h15 ngày 20/11 (Vòng loại World Cup 2026).
| Kuwait vs Iraq
| 0
|
| bóng đá Parma vs Empoli 18h30 ngày 27/10 (Serie A 2024/25).
| nhận định Parma vs Empoli
| 1
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters