Tam1032 commited on
Commit
b90da1e
·
verified ·
1 Parent(s): 4c4ad10

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:19598
8
+ - loss:CoSENTLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: soi tỷ lệ Southampton vs Nottingham (21h00, 24/8), vòng 2 Ngoại
12
+ hạng Anh
13
+ sentences:
14
+ - nhận định Oakleigh Cannons vs Macarthur
15
+ - dự đoán Mallorca vs Athletic Bilbao
16
+ - soi kèo Southampton vs Nottingham Forest
17
+ - source_sentence: Melbourne Victory vs Macarthur 12h00 ngày 3/11 (VĐQG Australia
18
+ 2024/25).
19
+ sentences:
20
+ - tỷ lệ Tijuana vs Leon
21
+ - 'Melbourne Victory vs Brisbane Roar '
22
+ - Hải Phòng vs SHB Đà Nẵng
23
+ - source_sentence: Banfield vs Estudiantes 4h00 ngày 8/10 (VĐQG Argentina 2024).
24
+ sentences:
25
+ - arsenal vs psg
26
+ - Shandong Luneng vs Qingdaoyangcheng
27
+ - 'Boca Juniors vs River Plate '
28
+ - source_sentence: 'St Pauli vs Bayern Munich (21h30 ngày 9/11): Khó có bất ngờ.'
29
+ sentences:
30
+ - st pauli vs bayern munich
31
+ - Seattle Sounders vs Houston Dynamo
32
+ - kyrgyzstan vs triều tiên
33
+ - source_sentence: 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.'
34
+ sentences:
35
+ - cruz azul vs juarez
36
+ - Real Madrid vs Barcelona
37
+ - El Salvador vs Montserrat
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - cosine_accuracy
42
+ - cosine_accuracy_threshold
43
+ - cosine_f1
44
+ - cosine_f1_threshold
45
+ - cosine_precision
46
+ - cosine_recall
47
+ - cosine_ap
48
+ model-index:
49
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
50
+ results:
51
+ - task:
52
+ type: binary-classification
53
+ name: Binary Classification
54
+ dataset:
55
+ name: sport query title dev
56
+ type: sport_query_title_dev
57
+ metrics:
58
+ - type: cosine_accuracy
59
+ value: 0.9943877551020408
60
+ name: Cosine Accuracy
61
+ - type: cosine_accuracy_threshold
62
+ value: 0.6410836577415466
63
+ name: Cosine Accuracy Threshold
64
+ - type: cosine_f1
65
+ value: 0.9943269726663229
66
+ name: Cosine F1
67
+ - type: cosine_f1_threshold
68
+ value: 0.6107593178749084
69
+ name: Cosine F1 Threshold
70
+ - type: cosine_precision
71
+ value: 0.9958677685950413
72
+ name: Cosine Precision
73
+ - type: cosine_recall
74
+ value: 0.9927909371781668
75
+ name: Cosine Recall
76
+ - type: cosine_ap
77
+ value: 0.9995956398472251
78
+ name: Cosine Ap
79
+ ---
80
+
81
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
82
+
83
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
84
+
85
+ ## Model Details
86
+
87
+ ### Model Description
88
+ - **Model Type:** Sentence Transformer
89
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
90
+ - **Maximum Sequence Length:** 256 tokens
91
+ - **Output Dimensionality:** 384 dimensions
92
+ - **Similarity Function:** Cosine Similarity
93
+ - **Training Dataset:**
94
+ - csv
95
+ <!-- - **Language:** Unknown -->
96
+ <!-- - **License:** Unknown -->
97
+
98
+ ### Model Sources
99
+
100
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
101
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
102
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
103
+
104
+ ### Full Model Architecture
105
+
106
+ ```
107
+ SentenceTransformer(
108
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
109
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
110
+ (2): Normalize()
111
+ )
112
+ ```
113
+
114
+ ## Usage
115
+
116
+ ### Direct Usage (Sentence Transformers)
117
+
118
+ First install the Sentence Transformers library:
119
+
120
+ ```bash
121
+ pip install -U sentence-transformers
122
+ ```
123
+
124
+ Then you can load this model and run inference.
125
+ ```python
126
+ from sentence_transformers import SentenceTransformer
127
+
128
+ # Download from the 🤗 Hub
129
+ model = SentenceTransformer("Tam1032/MiniLM6-v2-sport")
130
+ # Run inference
131
+ sentences = [
132
+ 'Juventus vs Napoli (23h00 ngày 21/9): Không dễ cho chủ nhà.',
133
+ 'Real Madrid vs Barcelona',
134
+ 'El Salvador vs Montserrat',
135
+ ]
136
+ embeddings = model.encode(sentences)
137
+ print(embeddings.shape)
138
+ # [3, 384]
139
+
140
+ # Get the similarity scores for the embeddings
141
+ similarities = model.similarity(embeddings, embeddings)
142
+ print(similarities.shape)
143
+ # [3, 3]
144
+ ```
145
+
146
+ <!--
147
+ ### Direct Usage (Transformers)
148
+
149
+ <details><summary>Click to see the direct usage in Transformers</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Downstream Usage (Sentence Transformers)
156
+
157
+ You can finetune this model on your own dataset.
158
+
159
+ <details><summary>Click to expand</summary>
160
+
161
+ </details>
162
+ -->
163
+
164
+ <!--
165
+ ### Out-of-Scope Use
166
+
167
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
168
+ -->
169
+
170
+ ## Evaluation
171
+
172
+ ### Metrics
173
+
174
+ #### Binary Classification
175
+
176
+ * Dataset: `sport_query_title_dev`
177
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
178
+
179
+ | Metric | Value |
180
+ |:--------------------------|:-----------|
181
+ | cosine_accuracy | 0.9944 |
182
+ | cosine_accuracy_threshold | 0.6411 |
183
+ | cosine_f1 | 0.9943 |
184
+ | cosine_f1_threshold | 0.6108 |
185
+ | cosine_precision | 0.9959 |
186
+ | cosine_recall | 0.9928 |
187
+ | **cosine_ap** | **0.9996** |
188
+
189
+ <!--
190
+ ## Bias, Risks and Limitations
191
+
192
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
193
+ -->
194
+
195
+ <!--
196
+ ### Recommendations
197
+
198
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
199
+ -->
200
+
201
+ ## Training Details
202
+
203
+ ### Training Dataset
204
+
205
+ #### csv
206
+
207
+ * Dataset: csv
208
+ * Size: 19,598 training samples
209
+ * Columns: <code>hypothesis</code>, <code>premise</code>, and <code>label</code>
210
+ * Approximate statistics based on the first 1000 samples:
211
+ | | hypothesis | premise | label |
212
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
213
+ | type | string | string | int |
214
+ | details | <ul><li>min: 12 tokens</li><li>mean: 27.44 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.63 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>0: ~50.20%</li><li>1: ~49.80%</li></ul> |
215
+ * Samples:
216
+ | hypothesis | premise | label |
217
+ |:---------------------------------------------------------------------------------------|:--------------------------------------------------------|:---------------|
218
+ | <code>bóng đá Las Palmas vs Girona, 23h30 ngày 26/10: Trừng phạt chủ nhà.</code> | <code>Las Palmas vs Girona</code> | <code>1</code> |
219
+ | <code>Seattle Sounders vs Houston Dynamo 9h30 ngày 29/9 (Nhà nghề Mỹ 2024).</code> | <code>dự đoán Seattle Sounders vs Houston Dynamo</code> | <code>1</code> |
220
+ | <code>bóng đá Tây Ban Nha vs Đan Mạch, 01h45 ngày 13/10: Khuất phục ‘lính chì’.</code> | <code>bóng đá Tây Ban Nha vs Đan Mạch</code> | <code>1</code> |
221
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
222
+ ```json
223
+ {
224
+ "scale": 20.0,
225
+ "similarity_fct": "pairwise_cos_sim"
226
+ }
227
+ ```
228
+
229
+ ### Evaluation Dataset
230
+
231
+ #### csv
232
+
233
+ * Dataset: csv
234
+ * Size: 19,598 evaluation samples
235
+ * Columns: <code>hypothesis</code>, <code>premise</code>, and <code>label</code>
236
+ * Approximate statistics based on the first 1000 samples:
237
+ | | hypothesis | premise | label |
238
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
239
+ | type | string | string | int |
240
+ | details | <ul><li>min: 12 tokens</li><li>mean: 27.15 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.55 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>1: ~48.60%</li></ul> |
241
+ * Samples:
242
+ | hypothesis | premise | label |
243
+ |:--------------------------------------------------------------------------|:---------------------------------------|:---------------|
244
+ | <code>Hải Phòng vs CAHN (19h15 ngày 15/9): Điểm tựa sân nhà.</code> | <code>kết quả Hải Phòng vs CAHN</code> | <code>1</code> |
245
+ | <code>Kuwait vs Jordan 1h15 ngày 20/11 (Vòng loại World Cup 2026).</code> | <code>Kuwait vs Iraq</code> | <code>0</code> |
246
+ | <code>bóng đá Parma vs Empoli 18h30 ngày 27/10 (Serie A 2024/25).</code> | <code>nhận định Parma vs Empoli</code> | <code>1</code> |
247
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
248
+ ```json
249
+ {
250
+ "scale": 20.0,
251
+ "similarity_fct": "pairwise_cos_sim"
252
+ }
253
+ ```
254
+
255
+ ### Training Hyperparameters
256
+ #### Non-Default Hyperparameters
257
+
258
+ - `eval_strategy`: epoch
259
+ - `per_device_train_batch_size`: 16
260
+ - `per_device_eval_batch_size`: 16
261
+ - `warmup_ratio`: 0.1
262
+ - `fp16`: True
263
+
264
+ #### All Hyperparameters
265
+ <details><summary>Click to expand</summary>
266
+
267
+ - `overwrite_output_dir`: False
268
+ - `do_predict`: False
269
+ - `eval_strategy`: epoch
270
+ - `prediction_loss_only`: True
271
+ - `per_device_train_batch_size`: 16
272
+ - `per_device_eval_batch_size`: 16
273
+ - `per_gpu_train_batch_size`: None
274
+ - `per_gpu_eval_batch_size`: None
275
+ - `gradient_accumulation_steps`: 1
276
+ - `eval_accumulation_steps`: None
277
+ - `torch_empty_cache_steps`: None
278
+ - `learning_rate`: 5e-05
279
+ - `weight_decay`: 0.0
280
+ - `adam_beta1`: 0.9
281
+ - `adam_beta2`: 0.999
282
+ - `adam_epsilon`: 1e-08
283
+ - `max_grad_norm`: 1.0
284
+ - `num_train_epochs`: 3
285
+ - `max_steps`: -1
286
+ - `lr_scheduler_type`: linear
287
+ - `lr_scheduler_kwargs`: {}
288
+ - `warmup_ratio`: 0.1
289
+ - `warmup_steps`: 0
290
+ - `log_level`: passive
291
+ - `log_level_replica`: warning
292
+ - `log_on_each_node`: True
293
+ - `logging_nan_inf_filter`: True
294
+ - `save_safetensors`: True
295
+ - `save_on_each_node`: False
296
+ - `save_only_model`: False
297
+ - `restore_callback_states_from_checkpoint`: False
298
+ - `no_cuda`: False
299
+ - `use_cpu`: False
300
+ - `use_mps_device`: False
301
+ - `seed`: 42
302
+ - `data_seed`: None
303
+ - `jit_mode_eval`: False
304
+ - `use_ipex`: False
305
+ - `bf16`: False
306
+ - `fp16`: True
307
+ - `fp16_opt_level`: O1
308
+ - `half_precision_backend`: auto
309
+ - `bf16_full_eval`: False
310
+ - `fp16_full_eval`: False
311
+ - `tf32`: None
312
+ - `local_rank`: 0
313
+ - `ddp_backend`: None
314
+ - `tpu_num_cores`: None
315
+ - `tpu_metrics_debug`: False
316
+ - `debug`: []
317
+ - `dataloader_drop_last`: False
318
+ - `dataloader_num_workers`: 0
319
+ - `dataloader_prefetch_factor`: None
320
+ - `past_index`: -1
321
+ - `disable_tqdm`: False
322
+ - `remove_unused_columns`: True
323
+ - `label_names`: None
324
+ - `load_best_model_at_end`: False
325
+ - `ignore_data_skip`: False
326
+ - `fsdp`: []
327
+ - `fsdp_min_num_params`: 0
328
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
329
+ - `fsdp_transformer_layer_cls_to_wrap`: None
330
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
331
+ - `deepspeed`: None
332
+ - `label_smoothing_factor`: 0.0
333
+ - `optim`: adamw_torch
334
+ - `optim_args`: None
335
+ - `adafactor`: False
336
+ - `group_by_length`: False
337
+ - `length_column_name`: length
338
+ - `ddp_find_unused_parameters`: None
339
+ - `ddp_bucket_cap_mb`: None
340
+ - `ddp_broadcast_buffers`: False
341
+ - `dataloader_pin_memory`: True
342
+ - `dataloader_persistent_workers`: False
343
+ - `skip_memory_metrics`: True
344
+ - `use_legacy_prediction_loop`: False
345
+ - `push_to_hub`: False
346
+ - `resume_from_checkpoint`: None
347
+ - `hub_model_id`: None
348
+ - `hub_strategy`: every_save
349
+ - `hub_private_repo`: None
350
+ - `hub_always_push`: False
351
+ - `gradient_checkpointing`: False
352
+ - `gradient_checkpointing_kwargs`: None
353
+ - `include_inputs_for_metrics`: False
354
+ - `include_for_metrics`: []
355
+ - `eval_do_concat_batches`: True
356
+ - `fp16_backend`: auto
357
+ - `push_to_hub_model_id`: None
358
+ - `push_to_hub_organization`: None
359
+ - `mp_parameters`:
360
+ - `auto_find_batch_size`: False
361
+ - `full_determinism`: False
362
+ - `torchdynamo`: None
363
+ - `ray_scope`: last
364
+ - `ddp_timeout`: 1800
365
+ - `torch_compile`: False
366
+ - `torch_compile_backend`: None
367
+ - `torch_compile_mode`: None
368
+ - `dispatch_batches`: None
369
+ - `split_batches`: None
370
+ - `include_tokens_per_second`: False
371
+ - `include_num_input_tokens_seen`: False
372
+ - `neftune_noise_alpha`: None
373
+ - `optim_target_modules`: None
374
+ - `batch_eval_metrics`: False
375
+ - `eval_on_start`: False
376
+ - `use_liger_kernel`: False
377
+ - `eval_use_gather_object`: False
378
+ - `average_tokens_across_devices`: False
379
+ - `prompts`: None
380
+ - `batch_sampler`: batch_sampler
381
+ - `multi_dataset_batch_sampler`: proportional
382
+
383
+ </details>
384
+
385
+ ### Training Logs
386
+ | Epoch | Step | Training Loss | Validation Loss | sport_query_title_dev_cosine_ap |
387
+ |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|
388
+ | 1.0 | 1103 | - | 0.1376 | 0.9991 |
389
+ | 1.4506 | 1600 | 0.3994 | - | - |
390
+ | 2.0 | 2206 | - | 0.0693 | 0.9994 |
391
+ | 2.9012 | 3200 | 0.0442 | - | - |
392
+ | 3.0 | 3309 | - | 0.0534 | 0.9996 |
393
+
394
+
395
+ ### Framework Versions
396
+ - Python: 3.11.7
397
+ - Sentence Transformers: 3.3.1
398
+ - Transformers: 4.47.0
399
+ - PyTorch: 2.5.1+cu124
400
+ - Accelerate: 1.2.1
401
+ - Datasets: 3.2.0
402
+ - Tokenizers: 0.21.0
403
+
404
+ ## Citation
405
+
406
+ ### BibTeX
407
+
408
+ #### Sentence Transformers
409
+ ```bibtex
410
+ @inproceedings{reimers-2019-sentence-bert,
411
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
412
+ author = "Reimers, Nils and Gurevych, Iryna",
413
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
414
+ month = "11",
415
+ year = "2019",
416
+ publisher = "Association for Computational Linguistics",
417
+ url = "https://arxiv.org/abs/1908.10084",
418
+ }
419
+ ```
420
+
421
+ #### CoSENTLoss
422
+ ```bibtex
423
+ @online{kexuefm-8847,
424
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
425
+ author={Su Jianlin},
426
+ year={2022},
427
+ month={Jan},
428
+ url={https://kexue.fm/archives/8847},
429
+ }
430
+ ```
431
+
432
+ <!--
433
+ ## Glossary
434
+
435
+ *Clearly define terms in order to be accessible across audiences.*
436
+ -->
437
+
438
+ <!--
439
+ ## Model Card Authors
440
+
441
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
442
+ -->
443
+
444
+ <!--
445
+ ## Model Card Contact
446
+
447
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
448
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3f45651c021acff30565d362ce6e37b4717c3411da56dbf63a53ebbf534f193
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff