Lambent's picture
Update README.md
ddba062 verified
|
raw
history blame
3.31 kB
---
license: apache-2.0
base_model: HuggingFaceTB/cosmo-1b
tags:
- generated_from_trainer
model-index:
- name: galore-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
Catastrophic forgetting test results:
Initial evaluation loss on 1k subset of HuggingFaceTB/cosmopedia-100k dataset was 1.182. 100 steps of LISA training reduced this to 1.117.
Comparison to control: cosmo-1b started out with 1.003 loss on (a different subset of) dataset, increasing to 1.024 at 100 steps.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Vezora/Tested-22k-Python-Alpaca
type: alpaca
dataset_prepared_path: prepared-qlora
val_set_size: 0.05
output_dir: ./galore-out
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: cosmo-python-galore
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: galore_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0005
optim_target_modules:
- self_attn # for llama
- mlp
optim_args:
rank: 256
scale: 1
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# galore-out
This model is a fine-tuned version of [HuggingFaceTB/cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2426
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6299 | 0.0 | 1 | 0.6469 |
| 0.4353 | 0.25 | 215 | 0.4139 |
| 0.3721 | 0.5 | 430 | 0.2957 |
| 0.3514 | 0.75 | 645 | 0.2426 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0