Lambent's picture
Update README.md
ddba062 verified
|
raw
history blame
3.31 kB
metadata
license: apache-2.0
base_model: HuggingFaceTB/cosmo-1b
tags:
  - generated_from_trainer
model-index:
  - name: galore-out
    results: []

Catastrophic forgetting test results:

Initial evaluation loss on 1k subset of HuggingFaceTB/cosmopedia-100k dataset was 1.182. 100 steps of LISA training reduced this to 1.117.

Comparison to control: cosmo-1b started out with 1.003 loss on (a different subset of) dataset, increasing to 1.024 at 100 steps.

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Vezora/Tested-22k-Python-Alpaca
    type: alpaca
dataset_prepared_path: prepared-qlora
val_set_size: 0.05
output_dir: ./galore-out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: cosmo-python-galore
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: galore_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0005

optim_target_modules:
  - self_attn  # for llama
  - mlp

optim_args:
  rank: 256
  scale: 1

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

galore-out

This model is a fine-tuned version of HuggingFaceTB/cosmo-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.6299 0.0 1 0.6469
0.4353 0.25 215 0.4139
0.3721 0.5 430 0.2957
0.3514 0.75 645 0.2426

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0