Catastrophic forgetting test results:

Initial evaluation loss on 1k subset of HuggingFaceTB/cosmopedia-100k dataset was 1.182. 100 steps of LISA training reduced this to 1.117.

Comparison to control: cosmo-1b started out with 1.003 loss on (a different subset of) dataset, increasing to 1.024 at 100 steps.

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: HuggingFaceTB/cosmo-1b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Vezora/Tested-22k-Python-Alpaca
    type: alpaca
dataset_prepared_path: prepared-qlora
val_set_size: 0.05
output_dir: ./galore-out

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: cosmo-python-galore
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: galore_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0005

optim_target_modules:
  - self_attn  # for llama
  - mlp

optim_args:
  rank: 256
  scale: 1

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

galore-out

This model is a fine-tuned version of HuggingFaceTB/cosmo-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.6299 0.0 1 0.6469
0.4353 0.25 215 0.4139
0.3721 0.5 430 0.2957
0.3514 0.75 645 0.2426

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.0
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Lambent/cosmo-1b-galore-pythontest

Finetuned
(13)
this model
Merges
2 models