--- license: apache-2.0 base_model: HuggingFaceTB/cosmo-1b tags: - generated_from_trainer model-index: - name: galore-out results: [] --- Catastrophic forgetting test results: Initial evaluation loss on 1k subset of HuggingFaceTB/cosmopedia-100k dataset was 1.182. 100 steps of LISA training reduced this to 1.117. Comparison to control: cosmo-1b started out with 1.003 loss on (a different subset of) dataset, increasing to 1.024 at 100 steps. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: HuggingFaceTB/cosmo-1b model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Vezora/Tested-22k-Python-Alpaca type: alpaca dataset_prepared_path: prepared-qlora val_set_size: 0.05 output_dir: ./galore-out sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: cosmo-python-galore wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: galore_adamw_8bit lr_scheduler: cosine learning_rate: 0.0005 optim_target_modules: - self_attn # for llama - mlp optim_args: rank: 256 scale: 1 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# galore-out This model is a fine-tuned version of [HuggingFaceTB/cosmo-1b](https://huggingface.co/HuggingFaceTB/cosmo-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6299 | 0.0 | 1 | 0.6469 | | 0.4353 | 0.25 | 215 | 0.4139 | | 0.3721 | 0.5 | 430 | 0.2957 | | 0.3514 | 0.75 | 645 | 0.2426 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0