|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: atommic |
|
datasets: |
|
- SKMTEA |
|
thumbnail: null |
|
tags: |
|
- multitask-image-reconstruction-image-segmentation |
|
- MTLRS |
|
- ATOMMIC |
|
- pytorch |
|
model-index: |
|
- name: MTL_MTLRS_SKMTEA_poisson2d_4x |
|
results: [] |
|
|
|
--- |
|
|
|
|
|
## Model Overview |
|
|
|
ulti-Task Learning for MRI Reconstruction and Segmentation (MTLRS) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. |
|
|
|
|
|
## ATOMMIC: Training |
|
|
|
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. |
|
``` |
|
pip install atommic['all'] |
|
``` |
|
|
|
## How to Use this Model |
|
|
|
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. |
|
|
|
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf). |
|
|
|
### Automatically instantiate the model |
|
|
|
```base |
|
pretrained: true |
|
checkpoint: https://huggingface.co/wdika/MTL_MTLRS_SKMTEA_poisson2d_4x/blob/main/MTL_MTLRS_SKMTEA_poisson2d_4x.atommic |
|
mode: test |
|
``` |
|
|
|
### Usage |
|
|
|
You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information. |
|
|
|
|
|
## Model Architecture |
|
```base |
|
model: |
|
model_name: MTLRS |
|
joint_reconstruction_segmentation_module_cascades: 5 |
|
task_adaption_type: multi_task_learning |
|
use_reconstruction_module: true |
|
reconstruction_module_recurrent_layer: IndRNN |
|
reconstruction_module_conv_filters: |
|
- 64 |
|
- 64 |
|
- 2 |
|
reconstruction_module_conv_kernels: |
|
- 5 |
|
- 3 |
|
- 3 |
|
reconstruction_module_conv_dilations: |
|
- 1 |
|
- 2 |
|
- 1 |
|
reconstruction_module_conv_bias: |
|
- true |
|
- true |
|
- false |
|
reconstruction_module_recurrent_filters: |
|
- 64 |
|
- 64 |
|
- 0 |
|
reconstruction_module_recurrent_kernels: |
|
- 1 |
|
- 1 |
|
- 0 |
|
reconstruction_module_recurrent_dilations: |
|
- 1 |
|
- 1 |
|
- 0 |
|
reconstruction_module_recurrent_bias: |
|
- true |
|
- true |
|
- false |
|
reconstruction_module_depth: 2 |
|
reconstruction_module_time_steps: 8 |
|
reconstruction_module_conv_dim: 2 |
|
reconstruction_module_num_cascades: 1 |
|
reconstruction_module_dimensionality: 2 |
|
reconstruction_module_no_dc: true |
|
reconstruction_module_keep_prediction: true |
|
reconstruction_module_accumulate_predictions: true |
|
segmentation_module: AttentionUNet |
|
segmentation_module_input_channels: 1 |
|
segmentation_module_output_channels: 4 |
|
segmentation_module_channels: 64 |
|
segmentation_module_pooling_layers: 2 |
|
segmentation_module_dropout: 0.0 |
|
segmentation_loss: |
|
dice: 1.0 |
|
dice_loss_include_background: true # always set to true if the background is removed |
|
dice_loss_to_onehot_y: false |
|
dice_loss_sigmoid: false |
|
dice_loss_softmax: false |
|
dice_loss_other_act: none |
|
dice_loss_squared_pred: false |
|
dice_loss_jaccard: false |
|
dice_loss_flatten: false |
|
dice_loss_reduction: mean_batch |
|
dice_loss_smooth_nr: 1e-5 |
|
dice_loss_smooth_dr: 1e-5 |
|
dice_loss_batch: true |
|
dice_metric_include_background: true # always set to true if the background is removed |
|
dice_metric_to_onehot_y: false |
|
dice_metric_sigmoid: false |
|
dice_metric_softmax: false |
|
dice_metric_other_act: none |
|
dice_metric_squared_pred: false |
|
dice_metric_jaccard: false |
|
dice_metric_flatten: false |
|
dice_metric_reduction: mean_batch |
|
dice_metric_smooth_nr: 1e-5 |
|
dice_metric_smooth_dr: 1e-5 |
|
dice_metric_batch: true |
|
segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] |
|
segmentation_activation: sigmoid |
|
reconstruction_loss: |
|
l1: 1.0 |
|
kspace_reconstruction_loss: false |
|
total_reconstruction_loss_weight: 0.5 |
|
total_segmentation_loss_weight: 0.5 |
|
``` |
|
|
|
## Training |
|
```base |
|
optim: |
|
name: adam |
|
lr: 1e-4 |
|
betas: |
|
- 0.9 |
|
- 0.98 |
|
weight_decay: 0.0 |
|
sched: |
|
name: InverseSquareRootAnnealing |
|
min_lr: 0.0 |
|
last_epoch: -1 |
|
warmup_ratio: 0.1 |
|
|
|
trainer: |
|
strategy: ddp |
|
accelerator: gpu |
|
devices: 1 |
|
num_nodes: 1 |
|
max_epochs: 10 |
|
precision: 16-mixed |
|
enable_checkpointing: false |
|
logger: false |
|
log_every_n_steps: 50 |
|
check_val_every_n_epoch: -1 |
|
max_steps: -1 |
|
``` |
|
|
|
## Performance |
|
|
|
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files. |
|
|
|
Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice. |
|
|
|
Results |
|
------- |
|
|
|
Evaluation against SENSE targets |
|
-------------------------------- |
|
4x: MSE = 0.001105 +/- 0.001758 NMSE = 0.0211 +/- 0.02706 PSNR = 30.48 +/- 5.296 SSIM = 0.8324 +/- 0.1064 DICE = 0.8889 +/- 0.1177 F1 = 0.2471 +/- 0.203 HD95 = 7.594 +/- 3.673 IOU = 0.2182 +/- 0.1944 |
|
|
|
|
|
## Limitations |
|
|
|
This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane. |
|
|
|
|
|
## References |
|
|
|
[1] [ATOMMIC](https://github.com/wdika/atommic) |
|
|
|
[2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022 |