wdika commited on
Commit
c7c4424
·
verified ·
1 Parent(s): 8fe35e1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +193 -0
README.md ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - SKMTEA
8
+ thumbnail: null
9
+ tags:
10
+ - multitask-image-reconstruction-image-segmentation
11
+ - MTLRS
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: MTL_MTLRS_SKMTEA_poisson2d_4x
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ ulti-Task Learning for MRI Reconstruction and Segmentation (MTLRS) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/MTL_MTLRS_SKMTEA_poisson2d_4x/blob/main/MTL_MTLRS_SKMTEA_poisson2d_4x.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: MTLRS
56
+ joint_reconstruction_segmentation_module_cascades: 5
57
+ task_adaption_type: multi_task_learning
58
+ use_reconstruction_module: true
59
+ reconstruction_module_recurrent_layer: IndRNN
60
+ reconstruction_module_conv_filters:
61
+ - 64
62
+ - 64
63
+ - 2
64
+ reconstruction_module_conv_kernels:
65
+ - 5
66
+ - 3
67
+ - 3
68
+ reconstruction_module_conv_dilations:
69
+ - 1
70
+ - 2
71
+ - 1
72
+ reconstruction_module_conv_bias:
73
+ - true
74
+ - true
75
+ - false
76
+ reconstruction_module_recurrent_filters:
77
+ - 64
78
+ - 64
79
+ - 0
80
+ reconstruction_module_recurrent_kernels:
81
+ - 1
82
+ - 1
83
+ - 0
84
+ reconstruction_module_recurrent_dilations:
85
+ - 1
86
+ - 1
87
+ - 0
88
+ reconstruction_module_recurrent_bias:
89
+ - true
90
+ - true
91
+ - false
92
+ reconstruction_module_depth: 2
93
+ reconstruction_module_time_steps: 8
94
+ reconstruction_module_conv_dim: 2
95
+ reconstruction_module_num_cascades: 1
96
+ reconstruction_module_dimensionality: 2
97
+ reconstruction_module_no_dc: true
98
+ reconstruction_module_keep_prediction: true
99
+ reconstruction_module_accumulate_predictions: true
100
+ segmentation_module: AttentionUNet
101
+ segmentation_module_input_channels: 1
102
+ segmentation_module_output_channels: 4
103
+ segmentation_module_channels: 64
104
+ segmentation_module_pooling_layers: 2
105
+ segmentation_module_dropout: 0.0
106
+ segmentation_loss:
107
+ dice: 1.0
108
+ dice_loss_include_background: true # always set to true if the background is removed
109
+ dice_loss_to_onehot_y: false
110
+ dice_loss_sigmoid: false
111
+ dice_loss_softmax: false
112
+ dice_loss_other_act: none
113
+ dice_loss_squared_pred: false
114
+ dice_loss_jaccard: false
115
+ dice_loss_flatten: false
116
+ dice_loss_reduction: mean_batch
117
+ dice_loss_smooth_nr: 1e-5
118
+ dice_loss_smooth_dr: 1e-5
119
+ dice_loss_batch: true
120
+ dice_metric_include_background: true # always set to true if the background is removed
121
+ dice_metric_to_onehot_y: false
122
+ dice_metric_sigmoid: false
123
+ dice_metric_softmax: false
124
+ dice_metric_other_act: none
125
+ dice_metric_squared_pred: false
126
+ dice_metric_jaccard: false
127
+ dice_metric_flatten: false
128
+ dice_metric_reduction: mean_batch
129
+ dice_metric_smooth_nr: 1e-5
130
+ dice_metric_smooth_dr: 1e-5
131
+ dice_metric_batch: true
132
+ segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5]
133
+ segmentation_activation: sigmoid
134
+ reconstruction_loss:
135
+ l1: 1.0
136
+ kspace_reconstruction_loss: false
137
+ total_reconstruction_loss_weight: 0.5
138
+ total_segmentation_loss_weight: 0.5
139
+ ```
140
+
141
+ ## Training
142
+ ```base
143
+ optim:
144
+ name: adam
145
+ lr: 1e-4
146
+ betas:
147
+ - 0.9
148
+ - 0.98
149
+ weight_decay: 0.0
150
+ sched:
151
+ name: InverseSquareRootAnnealing
152
+ min_lr: 0.0
153
+ last_epoch: -1
154
+ warmup_ratio: 0.1
155
+
156
+ trainer:
157
+ strategy: ddp
158
+ accelerator: gpu
159
+ devices: 1
160
+ num_nodes: 1
161
+ max_epochs: 10
162
+ precision: 16-mixed
163
+ enable_checkpointing: false
164
+ logger: false
165
+ log_every_n_steps: 50
166
+ check_val_every_n_epoch: -1
167
+ max_steps: -1
168
+ ```
169
+
170
+ ## Performance
171
+
172
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files.
173
+
174
+ Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice.
175
+
176
+ Results
177
+ -------
178
+
179
+ Evaluation against SENSE targets
180
+ --------------------------------
181
+ 4x: MSE = 0.001105 +/- 0.001758 NMSE = 0.0211 +/- 0.02706 PSNR = 30.48 +/- 5.296 SSIM = 0.8324 +/- 0.1064 DICE = 0.8889 +/- 0.1177 F1 = 0.2471 +/- 0.203 HD95 = 7.594 +/- 3.673 IOU = 0.2182 +/- 0.1944
182
+
183
+
184
+ ## Limitations
185
+
186
+ This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane.
187
+
188
+
189
+ ## References
190
+
191
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
192
+
193
+ [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022