File size: 5,565 Bytes
c7c4424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- SKMTEA
thumbnail: null
tags:
- multitask-image-reconstruction-image-segmentation
- MTLRS
- ATOMMIC
- pytorch
model-index:
- name: MTL_MTLRS_SKMTEA_poisson2d_4x
  results: []

---


## Model Overview

ulti-Task Learning for MRI Reconstruction and Segmentation (MTLRS) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.


## ATOMMIC: Training

To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```

## How to Use this Model

The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf).

### Automatically instantiate the model

```base
pretrained: true
checkpoint: https://huggingface.co/wdika/MTL_MTLRS_SKMTEA_poisson2d_4x/blob/main/MTL_MTLRS_SKMTEA_poisson2d_4x.atommic
mode: test
```

### Usage

You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information.


## Model Architecture
```base
model:
  model_name: MTLRS
  joint_reconstruction_segmentation_module_cascades: 5
  task_adaption_type: multi_task_learning
  use_reconstruction_module: true
  reconstruction_module_recurrent_layer: IndRNN
  reconstruction_module_conv_filters:
    - 64
    - 64
    - 2
  reconstruction_module_conv_kernels:
    - 5
    - 3
    - 3
  reconstruction_module_conv_dilations:
    - 1
    - 2
    - 1
  reconstruction_module_conv_bias:
    - true
    - true
    - false
  reconstruction_module_recurrent_filters:
    - 64
    - 64
    - 0
  reconstruction_module_recurrent_kernels:
    - 1
    - 1
    - 0
  reconstruction_module_recurrent_dilations:
    - 1
    - 1
    - 0
  reconstruction_module_recurrent_bias:
    - true
    - true
    - false
  reconstruction_module_depth: 2
  reconstruction_module_time_steps: 8
  reconstruction_module_conv_dim: 2
  reconstruction_module_num_cascades: 1
  reconstruction_module_dimensionality: 2
  reconstruction_module_no_dc: true
  reconstruction_module_keep_prediction: true
  reconstruction_module_accumulate_predictions: true
  segmentation_module: AttentionUNet
  segmentation_module_input_channels: 1
  segmentation_module_output_channels: 4
  segmentation_module_channels: 64
  segmentation_module_pooling_layers: 2
  segmentation_module_dropout: 0.0
  segmentation_loss:
    dice: 1.0
  dice_loss_include_background: true  # always set to true if the background is removed
  dice_loss_to_onehot_y: false
  dice_loss_sigmoid: false
  dice_loss_softmax: false
  dice_loss_other_act: none
  dice_loss_squared_pred: false
  dice_loss_jaccard: false
  dice_loss_flatten: false
  dice_loss_reduction: mean_batch
  dice_loss_smooth_nr: 1e-5
  dice_loss_smooth_dr: 1e-5
  dice_loss_batch: true
  dice_metric_include_background: true  # always set to true if the background is removed
  dice_metric_to_onehot_y: false
  dice_metric_sigmoid: false
  dice_metric_softmax: false
  dice_metric_other_act: none
  dice_metric_squared_pred: false
  dice_metric_jaccard: false
  dice_metric_flatten: false
  dice_metric_reduction: mean_batch
  dice_metric_smooth_nr: 1e-5
  dice_metric_smooth_dr: 1e-5
  dice_metric_batch: true
  segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5]
  segmentation_activation: sigmoid
  reconstruction_loss:
    l1: 1.0
  kspace_reconstruction_loss: false
  total_reconstruction_loss_weight: 0.5
  total_segmentation_loss_weight: 0.5
```

## Training
```base
  optim:
    name: adam
    lr: 1e-4
    betas:
      - 0.9
      - 0.98
    weight_decay: 0.0
    sched:
      name: InverseSquareRootAnnealing
      min_lr: 0.0
      last_epoch: -1
      warmup_ratio: 0.1

trainer:
  strategy: ddp
  accelerator: gpu
  devices: 1
  num_nodes: 1
  max_epochs: 10
  precision: 16-mixed
  enable_checkpointing: false
  logger: false
  log_every_n_steps: 50
  check_val_every_n_epoch: -1
  max_steps: -1
```

## Performance

To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files.

Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice.

Results
-------

Evaluation against SENSE targets
--------------------------------
4x: MSE = 0.001105 +/- 0.001758 NMSE = 0.0211 +/- 0.02706 PSNR = 30.48 +/- 5.296 SSIM = 0.8324 +/- 0.1064 DICE = 0.8889 +/- 0.1177 F1 = 0.2471 +/- 0.203 HD95 = 7.594 +/- 3.673 IOU = 0.2182 +/- 0.1944


## Limitations

This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane.


## References

[1] [ATOMMIC](https://github.com/wdika/atommic)

[2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022