File size: 23,814 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
 
cd41f5f
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
9880f3d
adb0875
db6a3b7
9880f3d
db6a3b7
 
 
7cb2038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287e155
2cf8efe
698664c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd46f72
cd41f5f
d7b1815
 
eecf624
3c00466
bd46f72
698664c
 
 
 
 
cd41f5f
 
 
 
 
 
 
 
 
4285cd4
7cb2038
cabaad6
2cf8efe
e885fb9
7cb2038
 
06ee083
607e519
db6a3b7
 
 
 
 
 
 
 
 
698664c
607e519
 
 
 
adb0875
607e519
 
 
 
cabaad6
607e519
287e155
607e519
 
 
 
 
 
 
 
cabaad6
06ee083
287e155
 
db6a3b7
 
607e519
b7b00e2
 
 
 
 
 
 
 
 
 
 
adb0875
b7b00e2
 
 
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
 
cd41f5f
 
 
 
 
 
 
3057b36
cd41f5f
 
b7b00e2
 
cd41f5f
 
 
 
 
b7b00e2
cd41f5f
 
db6a3b7
 
 
 
cd41f5f
b7b00e2
 
bd46f72
 
 
 
 
b7b00e2
db6a3b7
 
 
 
 
cd41f5f
b7b00e2
 
ed3a4d8
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d475c1
15fe7bc
 
b7b00e2
7d475c1
b7b00e2
cd41f5f
9880f3d
db6a3b7
 
b7b00e2
cd41f5f
 
 
 
 
 
db6a3b7
 
 
 
9880f3d
db6a3b7
 
 
 
 
 
cd41f5f
b7b00e2
690b53e
b7b00e2
db6a3b7
cd41f5f
db6a3b7
 
 
06ee083
 
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb0875
7d475c1
6b6df60
12ecceb
 
 
 
7d475c1
 
db6a3b7
 
69b049a
 
a0d02e4
72d93a2
 
 
 
 
 
5ecde43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607e519
69b049a
b7b00e2
 
 
 
 
 
bd46f72
5ecde43
adb0875
bd46f72
 
 
 
 
b7b00e2
 
 
 
 
 
db6a3b7
 
 
4e6213f
b7b00e2
db894f7
b7b00e2
 
 
 
 
06ee083
2e78ab8
db6a3b7
9b95948
626bba1
912f25a
 
626bba1
 
912f25a
 
 
69b049a
912f25a
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
cd41f5f
 
 
69b049a
 
 
 
b7b00e2
 
 
 
eecf624
 
 
 
b7b00e2
06ee083
 
 
 
 
0ad8efc
33d2ae8
 
 
 
0ad8efc
607e519
287e155
db6a3b7
b7b00e2
 
 
607e519
b7b00e2
db6a3b7
 
cd41f5f
 
 
 
db6a3b7
287e155
607e519
db6a3b7
b7b00e2
 
db6a3b7
 
 
b7b00e2
 
db6a3b7
 
 
 
2e78ab8
db6a3b7
 
cd41f5f
db6a3b7
 
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
cd41f5f
db6a3b7
 
 
 
 
 
 
 
085a529
 
85ba10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
085a529
85ba10e
4285cd4
 
 
 
db6a3b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image, ImageOps
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils



import os
import random
import torch
import torchvision.transforms.functional as TF

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from controlnet_aux import PidiNetDetector, HEDdetector
from diffusers.utils import load_image
from huggingface_hub import HfApi
from pathlib import Path
from PIL import Image, ImageOps
import torch
import numpy as np
import cv2
import os
import random
from gradio_imageslider import ImageSlider

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

def reset_canvas():
    return gr.update(value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})

def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + negative


def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)

@spaces.GPU
def preprocess_image(image: Image.Image, 
                    prompt: str = "",
                    negative_prompt: str = "",
                    style_name: str = "",
                    num_steps: int = 25,
                    guidance_scale: float = 5,
                    controlnet_conditioning_scale: float = 1.0,
                    ) -> Image.Image:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        Image.Image: The preprocessed image.
    """
        
    width, height  = image['composite'].size
    ratio = np.sqrt(1024. * 1024. / (width * height))
    new_width, new_height = int(width * ratio), int(height * ratio)
    image = image['composite'].resize((new_width, new_height))
    image = ImageOps.invert(image)

    print("image:",type(image))

    prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
    
    print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
    output = pipe_control(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        num_inference_steps=num_steps,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        guidance_scale=guidance_scale,
        width=new_width,
        height=new_height).images[0]
    
        
    processed_image = pipeline.preprocess_image(output)
    return (image, processed_image)


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images.
        
    Returns:
        List[Image.Image]: The preprocessed images.
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    is_multiimage: bool,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.

    Args:
        image (Image.Image): The input image.
        multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
        is_multiimage (bool): Whether is in multi-image mode.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
        multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if not is_multiimage:
        outputs = pipeline.run(
            image[1],
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )
    else:
        outputs = pipeline.run_multi_image(
            [image[0] for image in multiimages],
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
            mode=multiimage_algo,
        )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, 'sample.glb')
    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


def reset_do_preprocess():
    return True
    
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.

    Returns:
        str: The path to the extracted Gaussian file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 4):
            img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            _images.append(np.array(img))
        images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """
    Split an image into multiple views.
    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Sketch to 3D with TRELLIS
    1. Fast sketch to image with SDXL Flash, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash)
    2. Scalable and versatile image to 3D generation using [TRELLIS](https://trellis3d.github.io/)
    ### 🎨🖌️ draw or upload a sketch and click "Generate" to create a 3D asset ✨
    
    """)
    
    with gr.Row():
        with gr.Column():
            #image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
            with gr.Column():    
                image_prompt = gr.ImageMask(label="Input sketch", type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
                with gr.Row():
                    sketch_btn = gr.Button("process sketch")
                    generate_btn = gr.Button("Generate 3D")
                with gr.Row():
                    prompt = gr.Textbox(label="Prompt")
                    style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)

                with gr.Accordion(label="Generation Settings", open=False):
                    with gr.Tab(label="sketch-to-image generation"):
                        negative_prompt = gr.Textbox(label="Negative prompt")
                        
                        num_steps = gr.Slider(
                        label="Number of steps",
                        minimum=1,
                        maximum=20,
                        step=1,
                        value=8,
                    )
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.1,
                            maximum=10.0,
                            step=0.1,
                            value=5,
                        )
                        controlnet_conditioning_scale = gr.Slider(
                            label="controlnet conditioning scale",
                            minimum=0.5,
                            maximum=5.0,
                            step=0.01,
                            value=0.85,
                        )
                    with gr.Tab(label="3D generation"):
                        seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                        gr.Markdown("Stage 1: Sparse Structure Generation")
                        with gr.Row():
                            ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                            ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                        gr.Markdown("Stage 2: Structured Latent Generation")
                        with gr.Row():
                            slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                            slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                        multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
                   
                            
            with gr.Tab(label="Multiple Images", id=1, visible=False) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                        Input different views of the object in separate images. 
                        
                        *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
                    """)
            
            
            #generate_btn = gr.Button("Generate")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            image_prompt_processed = ImageSlider(label="processed sketch", interactive=False, type="pil", height=512)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    is_multiimage = gr.State(False)
    do_preprocess = gr.State(True)
    output_buf = gr.State()

    #Example images at the bottom of the page
    with gr.Row(visible=False) as single_image_example:
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[image_prompt_processed],
            run_on_click=True,
            examples_per_page=64,
        )
    with gr.Row(visible=False) as multiimage_example:
        examples_multi = gr.Examples(
            examples=prepare_multi_example(),
            inputs=[image_prompt],
            fn=split_image,
            outputs=[multiimage_prompt],
            run_on_click=True,
            examples_per_page=8,
        )

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    # single_image_input_tab.select(
    #     lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
    #     outputs=[is_multiimage, single_image_example, multiimage_example]
    # )
    multiimage_input_tab.select(
        lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
        outputs=[is_multiimage, single_image_example, multiimage_example]
    )
    image_prompt.clear(
        fn=reset_canvas,
        outputs = [image_prompt]
    )
    
    # image_prompt.upload(
    #     preprocess_image,
    #     inputs=[image_prompt, prompt, negative_prompt, style, do_preprocess],
    #     outputs=[image_prompt, do_preprocess],
    # )
    sketch_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        preprocess_image,
        inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
        outputs=[image_prompt_processed],
    )
    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        image_to_3d,
        inputs=[image_prompt_processed, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
        outputs=[output_buf, video_output],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_glb_btn, extract_gs_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_glb],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: gr.Button(interactive=False),
        outputs=[download_glb],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()

    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    #scribble controlnet
    controlnet = ControlNetModel.from_pretrained(
    "xinsir/controlnet-scribble-sdxl-1.0",
    torch_dtype=torch.float16
)
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    
    pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained(
        "sd-community/sdxl-flash",
        controlnet=controlnet,
        vae=vae,
        torch_dtype=torch.float16,
    )
    pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
    pipe_control.to(device)
    
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch()