Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -130,7 +130,7 @@ def preprocess_image(image: Image.Image,
|
|
130 |
num_steps: int = 25,
|
131 |
guidance_scale: float = 5,
|
132 |
controlnet_conditioning_scale: float = 1.0,
|
133 |
-
|
134 |
"""
|
135 |
Preprocess the input image.
|
136 |
|
@@ -141,35 +141,32 @@ def preprocess_image(image: Image.Image,
|
|
141 |
Image.Image: The preprocessed image.
|
142 |
"""
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
153 |
-
|
154 |
-
print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
|
155 |
-
image = pipe_control(
|
156 |
-
prompt=prompt,
|
157 |
-
negative_prompt=negative_prompt,
|
158 |
-
image=image,
|
159 |
-
num_inference_steps=num_steps,
|
160 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
161 |
-
guidance_scale=guidance_scale,
|
162 |
-
width=new_width,
|
163 |
-
height=new_height).images[0]
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
return processed_image, False
|
168 |
-
else:
|
169 |
-
return image, False
|
170 |
|
171 |
|
172 |
-
def preprocess_images(images: List[Tuple[Image.Image, str]]
|
173 |
"""
|
174 |
Preprocess a list of input images.
|
175 |
|
@@ -394,12 +391,13 @@ with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo:
|
|
394 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
395 |
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
396 |
image_prompt = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
397 |
-
|
398 |
-
|
|
|
|
|
399 |
prompt = gr.Textbox(label="Prompt")
|
400 |
-
|
401 |
-
|
402 |
-
negative_prompt = gr.Textbox(label="Negative prompt")
|
403 |
with gr.Tab(label="Multiple Images", id=1, visible=False) as multiimage_input_tab:
|
404 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
405 |
gr.Markdown("""
|
@@ -409,18 +407,43 @@ with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo:
|
|
409 |
""")
|
410 |
|
411 |
with gr.Accordion(label="Generation Settings", open=False):
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
generate_btn = gr.Button("Generate")
|
425 |
|
426 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
@@ -489,13 +512,13 @@ with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo:
|
|
489 |
# )
|
490 |
sketch_btn.click(
|
491 |
preprocess_image,
|
492 |
-
inputs=[image_prompt, prompt, negative_prompt, style,
|
493 |
-
outputs=[image_prompt
|
494 |
)
|
495 |
multiimage_prompt.upload(
|
496 |
preprocess_images,
|
497 |
inputs=[multiimage_prompt],
|
498 |
-
outputs=[multiimage_prompt
|
499 |
)
|
500 |
|
501 |
generate_btn.click(
|
@@ -504,8 +527,8 @@ with gr.Blocks(delete_cache=(600, 600), js=js_func) as demo:
|
|
504 |
outputs=[seed],
|
505 |
).then(
|
506 |
image_to_3d,
|
507 |
-
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo
|
508 |
-
outputs=[output_buf, video_output
|
509 |
).then(
|
510 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
511 |
outputs=[extract_glb_btn, extract_gs_btn],
|
|
|
130 |
num_steps: int = 25,
|
131 |
guidance_scale: float = 5,
|
132 |
controlnet_conditioning_scale: float = 1.0,
|
133 |
+
) -> Image.Image:
|
134 |
"""
|
135 |
Preprocess the input image.
|
136 |
|
|
|
141 |
Image.Image: The preprocessed image.
|
142 |
"""
|
143 |
|
144 |
+
width, height = image['composite'].size
|
145 |
+
ratio = np.sqrt(1024. * 1024. / (width * height))
|
146 |
+
new_width, new_height = int(width * ratio), int(height * ratio)
|
147 |
+
image = image['composite'].resize((new_width, new_height))
|
148 |
+
|
149 |
+
print("image:",type(image))
|
150 |
+
|
151 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
152 |
|
153 |
+
print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
|
154 |
+
image = pipe_control(
|
155 |
+
prompt=prompt,
|
156 |
+
negative_prompt=negative_prompt,
|
157 |
+
image=image,
|
158 |
+
num_inference_steps=num_steps,
|
159 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
160 |
+
guidance_scale=guidance_scale,
|
161 |
+
width=new_width,
|
162 |
+
height=new_height).images[0]
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
processed_image = pipeline.preprocess_image(image)
|
166 |
+
return processed_image
|
|
|
|
|
|
|
167 |
|
168 |
|
169 |
+
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
170 |
"""
|
171 |
Preprocess a list of input images.
|
172 |
|
|
|
391 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
392 |
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
393 |
image_prompt = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
394 |
+
with gr.Row():
|
395 |
+
sketch_btn = gr.Button("process sketch")
|
396 |
+
generate_btn = gr.Button("Generate 3D")
|
397 |
+
with gr.Row():
|
398 |
prompt = gr.Textbox(label="Prompt")
|
399 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
400 |
+
|
|
|
401 |
with gr.Tab(label="Multiple Images", id=1, visible=False) as multiimage_input_tab:
|
402 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
403 |
gr.Markdown("""
|
|
|
407 |
""")
|
408 |
|
409 |
with gr.Accordion(label="Generation Settings", open=False):
|
410 |
+
with gr.Tab(label="sketch-to-image generation"):
|
411 |
+
negative_prompt = gr.Textbox(label="Negative prompt")
|
412 |
+
|
413 |
+
num_steps = gr.Slider(
|
414 |
+
label="Number of steps",
|
415 |
+
minimum=1,
|
416 |
+
maximum=20,
|
417 |
+
step=1,
|
418 |
+
value=10,
|
419 |
+
)
|
420 |
+
guidance_scale = gr.Slider(
|
421 |
+
label="Guidance scale",
|
422 |
+
minimum=0.1,
|
423 |
+
maximum=10.0,
|
424 |
+
step=0.1,
|
425 |
+
value=5,
|
426 |
+
)
|
427 |
+
controlnet_conditioning_scale = gr.Slider(
|
428 |
+
label="controlnet conditioning scale",
|
429 |
+
minimum=0.5,
|
430 |
+
maximum=5.0,
|
431 |
+
step=0.1,
|
432 |
+
value=0.9,
|
433 |
+
)
|
434 |
+
with gr.Tab(label="3D generation"):
|
435 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
436 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
437 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
438 |
+
with gr.Row():
|
439 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
440 |
+
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
441 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
442 |
+
with gr.Row():
|
443 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
444 |
+
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
445 |
+
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
446 |
+
|
447 |
generate_btn = gr.Button("Generate")
|
448 |
|
449 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
|
|
512 |
# )
|
513 |
sketch_btn.click(
|
514 |
preprocess_image,
|
515 |
+
inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
|
516 |
+
outputs=[image_prompt],
|
517 |
)
|
518 |
multiimage_prompt.upload(
|
519 |
preprocess_images,
|
520 |
inputs=[multiimage_prompt],
|
521 |
+
outputs=[multiimage_prompt],
|
522 |
)
|
523 |
|
524 |
generate_btn.click(
|
|
|
527 |
outputs=[seed],
|
528 |
).then(
|
529 |
image_to_3d,
|
530 |
+
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
531 |
+
outputs=[output_buf, video_output],
|
532 |
).then(
|
533 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
534 |
outputs=[extract_glb_btn, extract_gs_btn],
|