linoyts HF staff commited on
Commit
287e155
·
verified ·
1 Parent(s): f1934db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -34,7 +34,7 @@ import numpy as np
34
  import cv2
35
  import os
36
  import random
37
-
38
 
39
  style_list = [
40
  {
@@ -143,7 +143,7 @@ def preprocess_image(image: Image.Image,
143
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
144
 
145
  print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
146
- image = pipe_control(
147
  prompt=prompt,
148
  negative_prompt=negative_prompt,
149
  image=image,
@@ -154,8 +154,8 @@ def preprocess_image(image: Image.Image,
154
  height=new_height).images[0]
155
 
156
 
157
- processed_image = pipeline.preprocess_image(image)
158
- return processed_image
159
 
160
 
161
  def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
@@ -254,7 +254,7 @@ def image_to_3d(
254
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
255
  if not is_multiimage:
256
  outputs = pipeline.run(
257
- image['composite'],
258
  seed=seed,
259
  formats=["gaussian", "mesh"],
260
  preprocess_image=False,
@@ -387,6 +387,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
387
  #image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
388
  with gr.Column():
389
  image_prompt = gr.ImageMask(type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
 
390
  with gr.Row():
391
  sketch_btn = gr.Button("process sketch")
392
  generate_btn = gr.Button("Generate 3D")
@@ -517,7 +518,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
517
  ).then(
518
  preprocess_image,
519
  inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
520
- outputs=[image_prompt],
521
  )
522
  multiimage_prompt.upload(
523
  preprocess_images,
@@ -531,7 +532,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
531
  outputs=[seed],
532
  ).then(
533
  image_to_3d,
534
- inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
535
  outputs=[output_buf, video_output],
536
  ).then(
537
  lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
 
34
  import cv2
35
  import os
36
  import random
37
+ from gradio_imageslider import ImageSlider
38
 
39
  style_list = [
40
  {
 
143
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
144
 
145
  print("params:", prompt, negative_prompt, style_name, num_steps, guidance_scale, controlnet_conditioning_scale)
146
+ output = pipe_control(
147
  prompt=prompt,
148
  negative_prompt=negative_prompt,
149
  image=image,
 
154
  height=new_height).images[0]
155
 
156
 
157
+ processed_image = pipeline.preprocess_image(output)
158
+ return (image, processed_image)
159
 
160
 
161
  def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
 
254
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
255
  if not is_multiimage:
256
  outputs = pipeline.run(
257
+ image[1]['composite'],
258
  seed=seed,
259
  formats=["gaussian", "mesh"],
260
  preprocess_image=False,
 
387
  #image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
388
  with gr.Column():
389
  image_prompt = gr.ImageMask(type="pil", image_mode="RGB", height=512, value={"background":Image.new("RGB", (512, 512), (255, 255, 255)), "layers":[Image.new("RGB", (512, 512), (255, 255, 255))], "composite":Image.new("RGB", (512, 512), (255, 255, 255))})
390
+ image_prompt_processed = ImageSlider(type="pil", height=512)
391
  with gr.Row():
392
  sketch_btn = gr.Button("process sketch")
393
  generate_btn = gr.Button("Generate 3D")
 
518
  ).then(
519
  preprocess_image,
520
  inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
521
+ outputs=[image_prompt_processed],
522
  )
523
  multiimage_prompt.upload(
524
  preprocess_images,
 
532
  outputs=[seed],
533
  ).then(
534
  image_to_3d,
535
+ inputs=[image_prompt_processed, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
536
  outputs=[output_buf, video_output],
537
  ).then(
538
  lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),