Spaces:
Running
on
Zero
Running
on
Zero
add scribble controlnet
Browse files
app.py
CHANGED
@@ -16,10 +16,41 @@ from trellis.representations import Gaussian, MeshExtractResult
|
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
21 |
os.makedirs(TMP_DIR, exist_ok=True)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def start_session(req: gr.Request):
|
25 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
@@ -31,7 +62,11 @@ def end_session(req: gr.Request):
|
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
|
34 |
-
def preprocess_image(image: Image.Image
|
|
|
|
|
|
|
|
|
35 |
"""
|
36 |
Preprocess the input image.
|
37 |
|
@@ -41,6 +76,21 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
41 |
Returns:
|
42 |
Image.Image: The preprocessed image.
|
43 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
processed_image = pipeline.preprocess_image(image)
|
45 |
return processed_image
|
46 |
|
@@ -268,7 +318,9 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
268 |
with gr.Column():
|
269 |
with gr.Tabs() as input_tabs:
|
270 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
271 |
-
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
|
|
|
|
272 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
273 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
274 |
gr.Markdown("""
|
@@ -352,7 +404,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
352 |
|
353 |
image_prompt.upload(
|
354 |
preprocess_image,
|
355 |
-
inputs=[image_prompt],
|
356 |
outputs=[image_prompt],
|
357 |
)
|
358 |
multiimage_prompt.upload(
|
@@ -365,6 +417,10 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
365 |
get_seed,
|
366 |
inputs=[randomize_seed, seed],
|
367 |
outputs=[seed],
|
|
|
|
|
|
|
|
|
368 |
).then(
|
369 |
image_to_3d,
|
370 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
|
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
|
18 |
|
19 |
+
|
20 |
+
import os
|
21 |
+
import random
|
22 |
+
import torch
|
23 |
+
import torchvision.transforms.functional as TF
|
24 |
+
|
25 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
26 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
27 |
+
from controlnet_aux import PidiNetDetector, HEDdetector
|
28 |
+
from diffusers.utils import load_image
|
29 |
+
from huggingface_hub import HfApi
|
30 |
+
from pathlib import Path
|
31 |
+
from PIL import Image, ImageOps
|
32 |
+
import torch
|
33 |
+
import numpy as np
|
34 |
+
import cv2
|
35 |
+
import os
|
36 |
+
import random
|
37 |
+
|
38 |
MAX_SEED = np.iinfo(np.int32).max
|
39 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
40 |
os.makedirs(TMP_DIR, exist_ok=True)
|
41 |
|
42 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
43 |
+
|
44 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
45 |
+
"sd-community/sdxl-flash",
|
46 |
+
controlnet=controlnet,
|
47 |
+
vae=vae,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
# scheduler=eulera_scheduler,
|
50 |
+
)
|
51 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
52 |
+
|
53 |
+
pipe.to(device)
|
54 |
|
55 |
def start_session(req: gr.Request):
|
56 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
62 |
shutil.rmtree(user_dir)
|
63 |
|
64 |
|
65 |
+
def preprocess_image(image: Image.Image,
|
66 |
+
prompt: str,
|
67 |
+
num_steps: int = 25,
|
68 |
+
guidance_scale: float = 5,
|
69 |
+
controlnet_conditioning_scale: float = 1.0,) -> Image.Image:
|
70 |
"""
|
71 |
Preprocess the input image.
|
72 |
|
|
|
76 |
Returns:
|
77 |
Image.Image: The preprocessed image.
|
78 |
"""
|
79 |
+
width, height = image['composite'].size
|
80 |
+
ratio = np.sqrt(1024. * 1024. / (width * height))
|
81 |
+
new_width, new_height = int(width * ratio), int(height * ratio)
|
82 |
+
image = image['composite'].resize((new_width, new_height))
|
83 |
+
|
84 |
+
image = pipe(
|
85 |
+
prompt=prompt,
|
86 |
+
negative_prompt=negative_prompt,
|
87 |
+
image=image,
|
88 |
+
num_inference_steps=num_steps,
|
89 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
90 |
+
guidance_scale=guidance_scale,
|
91 |
+
width=new_width,
|
92 |
+
height=new_height,).images[0]
|
93 |
+
|
94 |
processed_image = pipeline.preprocess_image(image)
|
95 |
return processed_image
|
96 |
|
|
|
318 |
with gr.Column():
|
319 |
with gr.Tabs() as input_tabs:
|
320 |
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
321 |
+
#image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
322 |
+
image_prompt = image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
|
323 |
+
prompt = gr.Textbox(label="Prompt")
|
324 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
325 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
326 |
gr.Markdown("""
|
|
|
404 |
|
405 |
image_prompt.upload(
|
406 |
preprocess_image,
|
407 |
+
inputs=[image_prompt, prompt],
|
408 |
outputs=[image_prompt],
|
409 |
)
|
410 |
multiimage_prompt.upload(
|
|
|
417 |
get_seed,
|
418 |
inputs=[randomize_seed, seed],
|
419 |
outputs=[seed],
|
420 |
+
).then(
|
421 |
+
preprocess_image,
|
422 |
+
inputs=[image_prompt, prompt],
|
423 |
+
outputs=[image_prompt],
|
424 |
).then(
|
425 |
image_to_3d,
|
426 |
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|