Fetching metadata from the HF Docker repository...
update button style
f4141ed
-
1.52 kB
initial commit
-
129 Bytes
reference bucket img for closest sample
-
414 Bytes
update input image to original
-
658 kB
update embeddings from resnet model
-
23.9 kB
update button style
-
7.49 kB
update closest samples code
-
2.05 kB
change map location to CPU
-
6.72 kB
debugging: xai output distortion
-
658 kB
feat:add beit,rise xai;display closest imgs with gallery
-
3.91 kB
initial commit cpu only
-
0 Bytes
:initial commit
-
6.47 kB
add compare esnet moodel
-
2.37 kB
update getting logits
-
6.7 kB
change map location to CPU
-
6.65 kB
feat:add beit,rise xai;display closest imgs with gallery
pca_fossils_142_resnet.pkl
Detected Pickle imports (5)
- "sklearn.decomposition._pca.PCA",
- "numpy.ndarray",
- "numpy.core.multiarray._reconstruct",
- "numpy.core.multiarray.scalar",
- "numpy.dtype"
How to fix it?
214 kB
update PCA
pca_fossils_170_finer.pkl
Detected Pickle imports (5)
- "numpy.dtype",
- "numpy.ndarray",
- "numpy.core.multiarray.scalar",
- "numpy.core.multiarray._reconstruct",
- "sklearn.decomposition._pca.PCA"
How to fix it?
27.7 kB
adding explanations and similar samples
pca_leaves_142_resnet.pkl
Detected Pickle imports (5)
- "sklearn.decomposition._pca.PCA",
- "numpy.ndarray",
- "numpy.core.multiarray._reconstruct",
- "numpy.core.multiarray.scalar",
- "numpy.dtype"
How to fix it?
214 kB
update PCA
pca_leaves_170_finer.pkl
Detected Pickle imports (5)
- "sklearn.decomposition._pca.PCA",
- "numpy.ndarray",
- "numpy.core.multiarray.scalar",
- "numpy.dtype",
- "numpy.core.multiarray._reconstruct"
How to fix it?
27.7 kB
adding explanations and similar samples
-
145 Bytes
update pre-installed dependencies
-
911 Bytes
use corresponding embeddings for each model
-
399 Bytes
feat:add beit,rise xai;display closest imgs with gallery