piperod91 commited on
Commit
92d14a2
·
1 Parent(s): af6ed1a

:initial commit

Browse files
Files changed (8) hide show
  1. .gitignore +8 -0
  2. app.py +121 -0
  3. inference_beit.py +0 -0
  4. inference_diffuser.py +0 -0
  5. inference_resnet.py +167 -0
  6. inference_sam.py +175 -0
  7. labels.py +175 -0
  8. pre-requirements.txt +6 -0
.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ .env
2
+ venv/
3
+ images/
4
+ *.pyc
5
+ *.pyo
6
+ *.pyd
7
+ *.swp
8
+ *.__pycache__
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import subprocess
3
+ import os
4
+ if os.getenv('SYSTEM') == 'spaces':
5
+ subprocess.call('pip install tensorflow==2.9'.split())
6
+ subprocess.call('pip install keras==2.9'.split())
7
+ subprocess.call('pip install git+https://github.com/facebookresearch/segment-anything.git')
8
+ subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
9
+ subprocess.call('pip install git+https://github.com/cocodataset/panopticapi.git'.split())
10
+
11
+ import gradio as gr
12
+ from huggingface_hub import snapshot_download
13
+ import cv2
14
+ import dotenv
15
+ dotenv.load_dotenv()
16
+ import numpy as np
17
+ import gradio as gr
18
+ import glob
19
+ from inference_sam import segmentation_sam
20
+
21
+ import pathlib
22
+
23
+ if not os.path.exists('images'):
24
+ REPO_ID='Serrelab/image_examples_gradio'
25
+ snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='dataset',local_dir='images')
26
+
27
+
28
+ def segment_image(input_image):
29
+ img = segmentation_sam(input_image)
30
+ return img
31
+
32
+ def classify_image(input_image, model_name):
33
+ if 'Rock 170' ==model_name:
34
+ from inference_resnet import inference_resnet_finer
35
+ result = inference_resnet_finer(input_image,model_name,n_classes=171)
36
+ return result
37
+ elif 'Mummified 170' ==model_name:
38
+ from inference_resnet import inference_resnet_finer
39
+ result = inference_resnet_finer(input_image,model_name,n_classes=170)
40
+ return result
41
+ if 'Fossils 19' ==model_name:
42
+ from inference_beit import inference_dino
43
+ return inference_dino(input_image,model_name)
44
+ return None
45
+
46
+ def find_closest(input_image):
47
+ return None
48
+
49
+
50
+ with gr.Blocks(theme='sudeepshouche/minimalist') as demo:
51
+
52
+ with gr.Tab(" 19 Classes Support"):
53
+
54
+ with gr.Row():
55
+ with gr.Column():
56
+ input_image = gr.Image(label="Input")
57
+ classify_image_button = gr.Button("Classify Image")
58
+
59
+ with gr.Column():
60
+ segmented_image = gr.outputs.Image(label="SAM output",type='numpy')
61
+ segment_button = gr.Button("Segment Image")
62
+ #classify_segmented_button = gr.Button("Classify Segmented Image")
63
+
64
+ with gr.Column():
65
+ drop_2 = gr.Dropdown(
66
+ ["Mummified 170", "Rock 170", "Fossils 19"],
67
+ multiselect=False,
68
+ value=["Rock 170"],
69
+ label="Model",
70
+ interactive=True,
71
+ )
72
+ class_predicted = gr.Label(label='Class Predicted',num_top_classes=10)
73
+
74
+ with gr.Row():
75
+
76
+ paths = sorted(pathlib.Path('images/').rglob('*.jpg'))
77
+ samples=[[path.as_posix()] for path in paths if 'fossils' in str(path) ][:19]
78
+ examples_fossils = gr.Examples(samples, inputs=input_image,examples_per_page=10,label='Fossils Examples from the dataset')
79
+ samples=[[path.as_posix()] for path in paths if 'leaves' in str(path) ][:19]
80
+ examples_leaves = gr.Examples(samples, inputs=input_image,examples_per_page=5,label='Leaves Examples from the dataset')
81
+
82
+ with gr.Accordion("Using Diffuser"):
83
+ with gr.Column():
84
+ prompt = gr.Textbox(lines=1, label="Prompt")
85
+ output_image = gr.Image(label="Output")
86
+ generate_button = gr.Button("Generate Leave")
87
+ with gr.Column():
88
+ class_predicted2 = gr.Label(label='Class Predicted from diffuser')
89
+ classify_button = gr.Button("Classify Image")
90
+
91
+
92
+ with gr.Accordion("Explanations "):
93
+ gr.Markdown("Computing Explanations from the model")
94
+ with gr.Row():
95
+ original_input = gr.Image(label="Original Frame")
96
+ saliency = gr.Image(label="saliency")
97
+ gradcam = gr.Image(label='gradcam')
98
+ guided_gradcam = gr.Image(label='guided gradcam')
99
+ guided_backprop = gr.Image(label='guided backprop')
100
+ generate_explanations = gr.Button("Generate Explanations")
101
+
102
+ with gr.Accordion('Closest Images'):
103
+ gr.Markdown("Finding the closest images in the dataset")
104
+ with gr.Row():
105
+ closest_image_0 = gr.Image(label='Closest Image')
106
+ closest_image_1 = gr.Image(label='Second Closest Image')
107
+ closest_image_2 = gr.Image(label='Third Closest Image')
108
+ closest_image_3 = gr.Image(label='Forth Closest Image')
109
+ closest_image_4 = gr.Image(label='Fifth Closest Image')
110
+ find_closest_btn = gr.Button("Find Closest Images")
111
+
112
+ segment_button.click(segment_image, inputs=input_image, outputs=segmented_image)
113
+ classify_image_button.click(classify_image, inputs=[input_image,drop_2], outputs=class_predicted)
114
+ #classify_segmented_button.click(classify_image, inputs=[segmented_image,drop_2], outputs=class_predicted)
115
+
116
+
117
+
118
+ demo.launch(debug=True)
119
+
120
+
121
+
inference_beit.py ADDED
File without changes
inference_diffuser.py ADDED
File without changes
inference_resnet.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ gpu_devices = tf.config.experimental.list_physical_devices('GPU')
3
+ tf.config.experimental.set_memory_growth(gpu_devices[0], True)
4
+ from keras.applications import resnet
5
+ import tensorflow.keras.layers as L
6
+ import os
7
+
8
+ from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
9
+ import matplotlib.pyplot as plt
10
+ from typing import Tuple
11
+ from huggingface_hub import snapshot_download
12
+ from labels import lookup_170
13
+ import numpy as np
14
+
15
+
16
+ REPO_ID='Serrelab/fossil_classification_models'
17
+ snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='model',local_dir='model_classification')
18
+
19
+
20
+ def get_model(base_arch='Nasnet',weights='imagenet',input_shape=(600,600,3),classes=64500):
21
+
22
+ if base_arch == 'Nasnet':
23
+ base_model = tf.keras.applications.NASNetLarge(
24
+ input_shape=input_shape,
25
+ include_top=False,
26
+ weights=weights,
27
+ input_tensor=None,
28
+ pooling=None,
29
+
30
+ )
31
+ elif base_arch == 'Resnet50v2':
32
+ base_model = tf.keras.applications.ResNet50V2(weights=weights,
33
+ include_top=False,
34
+ pooling='avg',
35
+ input_shape=input_shape)
36
+ elif base_arch == 'Resnet50v2_finer':
37
+ base_model = tf.keras.applications.ResNet50V2(weights=weights,
38
+ include_top=False,
39
+ pooling='avg',
40
+ input_shape=input_shape)
41
+ base_model = resnet.stack2(base_model.output, 512, 2, name="conv6")
42
+ base_model = resnet.stack2(base_model, 512, 2, name="conv7")
43
+ base_model = tf.keras.Model(base_model.input,base_model)
44
+
45
+ model = tf.keras.Sequential([
46
+ base_model,
47
+ L.Dense(classes,activation='softmax')
48
+ ])
49
+
50
+
51
+
52
+ model.compile(optimizer='adam',
53
+ loss='categorical_crossentropy',
54
+ )
55
+
56
+ return model
57
+
58
+
59
+ def get_triplet_model(input_shape = (600, 600, 3),
60
+ embedding_units = 256,
61
+ embedding_depth = 2,
62
+ backbone_class=tf.keras.applications.ResNet50V2,
63
+ nb_classes = 19,load_weights=False,finer_model=False,backbone_name ='Resnet50v2'):
64
+
65
+
66
+ backbone = backbone_class(input_shape=input_shape, include_top=False)
67
+ if load_weights:
68
+ model = get_model(backbone_name,input_shape=input_shape)
69
+ model.load_weights('/users/irodri15/data/irodri15/Fossils/Models/pretrained-herbarium/Resnet50v2_NO_imagenet_None_best_1600.h5')
70
+ trw = model.layers[0].get_weights()
71
+ backbone.set_weights(trw)
72
+ if finer_model:
73
+ base_model = resnet.stack2(backbone.output, 512, 2, name="conv6")
74
+ base_model = resnet.stack2(base_model, 512, 2, name="conv7")
75
+ backbone = tf.keras.Model(backbone.input,base_model)
76
+
77
+ features = GlobalAveragePooling2D()(backbone.output)
78
+
79
+ embedding_head = features
80
+ for embed_i in range(embedding_depth):
81
+ embedding_head = Dense(embedding_units, activation="relu" if embed_i < embedding_depth-1 else "linear")(embedding_head)
82
+ embedding_head = tf.nn.l2_normalize(embedding_head, -1, epsilon=1e-5)
83
+
84
+ logits_head = Dense(nb_classes)(features)
85
+
86
+ model = tf.keras.Model(backbone.input, [embedding_head, logits_head])
87
+ model.compile(loss='cce',metrics=['accuracy'])
88
+ #model.summary()
89
+
90
+ return model
91
+
92
+ load_size = 600
93
+ crop_size = 600
94
+ def _clever_crop(img: tf.Tensor,
95
+ target_size: Tuple[int]=(128,128),
96
+ grayscale: bool=False
97
+ ) -> tf.Tensor:
98
+ """[summary]
99
+ Args:
100
+ img (tf.Tensor): [description]
101
+ target_size (Tuple[int], optional): [description]. Defaults to (128,128).
102
+ grayscale (bool, optional): [description]. Defaults to False.
103
+ Returns:
104
+ tf.Tensor: [description]
105
+ """
106
+ maxside = tf.math.maximum(tf.shape(img)[0],tf.shape(img)[1])
107
+ minside = tf.math.minimum(tf.shape(img)[0],tf.shape(img)[1])
108
+ new_img = img
109
+
110
+ if tf.math.divide(maxside,minside) > 1.2:
111
+ repeating = tf.math.floor(tf.math.divide(maxside,minside))
112
+ new_img = img
113
+ if tf.math.equal(tf.shape(img)[1],minside):
114
+ for _ in range(int(repeating)):
115
+ new_img = tf.concat((new_img, img), axis=1)
116
+
117
+ if tf.math.equal(tf.shape(img)[0],minside):
118
+ for _ in range(int(repeating)):
119
+ new_img = tf.concat((new_img, img), axis=0)
120
+ new_img = tf.image.rot90(new_img)
121
+ else:
122
+ new_img = img
123
+ repeating = 0
124
+ img = tf.image.resize(new_img, target_size)
125
+ if grayscale:
126
+ img = tf.image.rgb_to_grayscale(img)
127
+ img = tf.image.grayscale_to_rgb(img)
128
+
129
+ return img,repeating
130
+
131
+ def preprocess(img,size=600):
132
+ img = np.array(img, np.float32) / 255.0
133
+ img = tf.image.resize(img, (size, size))
134
+ return np.array(img, np.float32)
135
+
136
+
137
+ def select_top_n(preds,n=10):
138
+ top_n = np.argsort(preds)[-n:][::-1]
139
+ return top_n
140
+
141
+
142
+ def parse_results(top_n,logits):
143
+ results = {}
144
+ for n in top_n:
145
+ label = lookup_170[n]
146
+ results[label] = float(logits[n])
147
+ return results
148
+
149
+ def inference_resnet_finer(x,type_model,size=576,n_classes=170,n_top=10):
150
+
151
+ model = get_triplet_model(input_shape = (size, size, 3),
152
+ embedding_units = 256,
153
+ embedding_depth = 2,
154
+ backbone_class=tf.keras.applications.ResNet50V2,
155
+ nb_classes = n_classes,load_weights=False,finer_model=True,backbone_name ='Resnet50v2')
156
+ if type_model=='Mummified 170':
157
+ model.load_weights('model_classification/mummified-170.h5')
158
+ elif type_model=='Rock 170':
159
+ model.load_weights('model_classification/rock-170.h5')
160
+ else:
161
+ return 'Error'
162
+ cropped = _clever_crop(x,(size,size))[0]
163
+ prep = preprocess(cropped,size=size)
164
+ logits = tf.nn.softmax(model.predict(np.array([prep]))[1][0]).cpu().numpy()
165
+ top_n = select_top_n(logits,n=n_top)
166
+
167
+ return parse_results(top_n,logits)
inference_sam.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ torch.cuda.set_per_process_memory_fraction(0.3, device=0)
3
+ import tensorflow as tf
4
+ gpu_devices = tf.config.experimental.list_physical_devices('GPU')
5
+ tf.config.experimental.set_memory_growth(gpu_devices[0], True)
6
+
7
+ from segment_anything import SamPredictor, sam_model_registry
8
+ import matplotlib.pyplot as plt
9
+ import cv2
10
+ import numpy as np
11
+ from math import ceil
12
+ import os
13
+ from huggingface_hub import snapshot_download
14
+
15
+ REPO_ID='Serrelab/SAM_Leaves'
16
+ snapshot_download(repo_id=REPO_ID, token=os.environ.get('READ_TOKEN'),repo_type='model',local_dir='model')
17
+
18
+ sam = sam_model_registry["default"]("model/sam_02-06_dice_mse_0.pth")
19
+ sam.cuda()
20
+ predictor = SamPredictor(sam)
21
+
22
+
23
+ from torch.nn import functional as F
24
+
25
+
26
+ def pad_gt(x):
27
+ h, w = x.shape[-2:]
28
+ padh = sam.image_encoder.img_size - h
29
+ padw = sam.image_encoder.img_size - w
30
+ x = F.pad(x, (0, padw, 0, padh))
31
+ return x
32
+
33
+ def preprocess(img):
34
+
35
+ img = np.array(img).astype(np.uint8)
36
+
37
+ #assert img.max() > 127.0
38
+
39
+ img_preprocess = predictor.transform.apply_image(img)
40
+ intermediate_shape = img_preprocess.shape
41
+
42
+ img_preprocess = torch.as_tensor(img_preprocess).cuda()
43
+ img_preprocess = img_preprocess.permute(2, 0, 1).contiguous()[None, :, :, :]
44
+
45
+ img_preprocess = sam.preprocess(img_preprocess)
46
+ if len(intermediate_shape) == 3:
47
+ intermediate_shape = intermediate_shape[:2]
48
+ elif len(intermediate_shape) == 4:
49
+ intermediate_shape = intermediate_shape[1:3]
50
+
51
+ return img_preprocess, intermediate_shape
52
+
53
+
54
+ def normalize(img):
55
+ img = img - tf.math.reduce_min(img)
56
+ img = img / tf.math.reduce_max(img)
57
+ img = img * 2.0 - 1.0
58
+ return img
59
+
60
+ def resize(img):
61
+ # default resize function for all pi outputs
62
+ return tf.image.resize(img, (SIZE, SIZE), method="bicubic")
63
+
64
+ def smooth_mask(mask, ds=20):
65
+ shape = tf.shape(mask)
66
+ w, h = shape[0], shape[1]
67
+ return tf.image.resize(tf.image.resize(mask, (ds, ds), method="bicubic"), (w, h), method="bicubic")
68
+
69
+ def pi(img, mask):
70
+ img = tf.cast(img, tf.float32)
71
+
72
+ shape = tf.shape(img)
73
+ w, h = tf.cast(shape[0], tf.int64), tf.cast(shape[1], tf.int64)
74
+
75
+ mask = smooth_mask(mask.cpu().numpy().astype(float))
76
+ mask = tf.reduce_mean(mask, -1)
77
+
78
+ img = img * tf.cast(mask > 0.01, tf.float32)[:, :, None]
79
+
80
+
81
+ img_resize = tf.image.resize(img, (SIZE, SIZE), method="bicubic", antialias=True)
82
+ img_pad = tf.image.resize_with_pad(img, SIZE, SIZE, method="bicubic", antialias=True)
83
+
84
+ # building 2 anchors
85
+ anchors = tf.where(mask > 0.15)
86
+ anchor_xmin = tf.math.reduce_min(anchors[:, 0])
87
+ anchor_xmax = tf.math.reduce_max(anchors[:, 0])
88
+ anchor_ymin = tf.math.reduce_min(anchors[:, 1])
89
+ anchor_ymax = tf.math.reduce_max(anchors[:, 1])
90
+
91
+ if anchor_xmax - anchor_xmin > 50 and anchor_ymax - anchor_ymin > 50:
92
+
93
+ img_anchor_1 = resize(img[anchor_xmin:anchor_xmax, anchor_ymin:anchor_ymax])
94
+
95
+ delta_x = (anchor_xmax - anchor_xmin) // 4
96
+ delta_y = (anchor_ymax - anchor_ymin) // 4
97
+ img_anchor_2 = img[anchor_xmin+delta_x:anchor_xmax-delta_x,
98
+ anchor_ymin+delta_y:anchor_ymax-delta_y]
99
+ img_anchor_2 = resize(img_anchor_2)
100
+ else:
101
+ img_anchor_1 = img_resize
102
+ img_anchor_2 = img_pad
103
+
104
+ # building the anchors max
105
+ anchor_max = tf.where(mask == tf.math.reduce_max(mask))[0]
106
+ anchor_max_x, anchor_max_y = anchor_max[0], anchor_max[1]
107
+
108
+ img_max_zoom1 = img[tf.math.maximum(anchor_max_x-SIZE, 0): tf.math.minimum(anchor_max_x+SIZE, w),
109
+ tf.math.maximum(anchor_max_y-SIZE, 0): tf.math.minimum(anchor_max_y+SIZE, h)]
110
+
111
+ img_max_zoom1 = resize(img_max_zoom1)
112
+ img_max_zoom2 = img[anchor_max_x-SIZE//2:anchor_max_x+SIZE//2,
113
+ anchor_max_y-SIZE//2:anchor_max_y+SIZE//2]
114
+ #img_max_zoom2 = img[tf.math.maximum(anchor_max_x-SIZE//2, 0): tf.math.minimum(anchor_max_x+SIZE//2, w),
115
+ # tf.math.maximum(anchor_max_y-SIZE//2, 0): tf.math.minimum(anchor_max_y+SIZE//2, h)]
116
+ #tf.print(img_max_zoom2.shape)
117
+ #img_max_zoom2 = resize(img_max_zoom2)
118
+ return tf.cast([
119
+ img_resize,
120
+ #img_pad,
121
+ img_anchor_1,
122
+ img_anchor_2,
123
+ img_max_zoom1,
124
+ #img_max_zoom2,
125
+ ], tf.float32)
126
+
127
+ def one_step_inference(x):
128
+ if len(x.shape) == 3:
129
+ original_size = x.shape[:2]
130
+ elif len(x.shape) == 4:
131
+ original_size = x.shape[1:3]
132
+
133
+ x, intermediate_shape = preprocess(x)
134
+
135
+ with torch.no_grad():
136
+ image_embedding = sam.image_encoder(x)
137
+
138
+ with torch.no_grad():
139
+ sparse_embeddings, dense_embeddings = sam.prompt_encoder(points = None, boxes = None,masks = None)
140
+ low_res_masks, iou_predictions = sam.mask_decoder(
141
+ image_embeddings=image_embedding,
142
+ image_pe=sam.prompt_encoder.get_dense_pe(),
143
+ sparse_prompt_embeddings=sparse_embeddings,
144
+ dense_prompt_embeddings=dense_embeddings,
145
+ multimask_output=False,
146
+ )
147
+ if len(x.shape) == 3:
148
+ input_size = tuple(x.shape[:2])
149
+ elif len(x.shape) == 4:
150
+ input_size = tuple(x.shape[-2:])
151
+
152
+
153
+ #upscaled_masks = sam.postprocess_masks(low_res_masks, input_size, original_size).cuda()
154
+ mask = F.interpolate(low_res_masks, (1024, 1024))[:, :, :intermediate_shape[0], :intermediate_shape[1]]
155
+ mask = F.interpolate(mask, (original_size[0], original_size[1]))
156
+
157
+ return mask
158
+
159
+ def segmentation_sam(x,SIZE=384):
160
+
161
+ x = tf.image.resize_with_pad(x, SIZE, SIZE)
162
+ predicted_mask = one_step_inference(x)
163
+ fig, ax = plt.subplots()
164
+ img = x.cpu().numpy()
165
+ mask = predicted_mask.cpu().numpy()[0][0]>0.2
166
+ ax.imshow(img)
167
+ ax.imshow(mask, cmap='jet', alpha=0.4)
168
+ plt.savefig('test.png')
169
+ ax.axis('off')
170
+ fig.canvas.draw()
171
+ # Now we can save it to a numpy array.
172
+ data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
173
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
174
+ plt.close()
175
+ return data
labels.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lookup_170 = {0: 'Anacardiaceae',
2
+ 1: 'Betulaceae',
3
+ 2: 'Cornaceae',
4
+ 3: 'Cunoniaceae',
5
+ 4: 'Euphorbiaceae',
6
+ 5: 'Fabaceae',
7
+ 6: 'Fagaceae',
8
+ 7: 'Juglandaceae',
9
+ 8: 'Lauraceae',
10
+ 9: 'Malvaceae',
11
+ 10: 'Meliaceae',
12
+ 11: 'Menispermaceae',
13
+ 12: 'Myrtaceae',
14
+ 13: 'Proteaceae',
15
+ 14: 'Rhamnaceae',
16
+ 15: 'Rosaceae',
17
+ 16: 'Salicaceae',
18
+ 17: 'Sapindaceae',
19
+ 18: 'Ulmaceae',
20
+ 19: 'Acanthaceae',
21
+ 20: 'Achariaceae',
22
+ 21: 'Achatocarpaceae',
23
+ 22: 'Actinidiaceae',
24
+ 23: 'Adoxaceae',
25
+ 24: 'Altingiaceae',
26
+ 25: 'Amaranthaceae',
27
+ 26: 'Ancistrocladaceae',
28
+ 27: 'Anisophylleaceae',
29
+ 28: 'Annonaceae',
30
+ 29: 'Apiaceae',
31
+ 30: 'Apocynaceae',
32
+ 31: 'Berberidaceae',
33
+ 32: 'Bignoniaceae',
34
+ 33: 'Bixaceae',
35
+ 34: 'Bonnetiaceae',
36
+ 35: 'Boraginaceae',
37
+ 36: 'Brunelliaceae',
38
+ 37: 'Burseraceae',
39
+ 38: 'Buxaceae',
40
+ 39: 'Calophyllaceae',
41
+ 40: 'Calycanthaceae',
42
+ 41: 'Campanulaceae',
43
+ 42: 'Canellaceae',
44
+ 43: 'Cannabaceae',
45
+ 44: 'Capparaceae',
46
+ 45: 'Caprifoliaceae',
47
+ 46: 'Cardiopteridaceae',
48
+ 47: 'Caricaceae',
49
+ 48: 'Caryocaraceae',
50
+ 49: 'Celastraceae',
51
+ 50: 'Centroplacaceae',
52
+ 51: 'Cercidiphyllaceae',
53
+ 52: 'Chloranthaceae',
54
+ 53: 'Chrysobalanaceae',
55
+ 54: 'Clethraceae',
56
+ 55: 'Clusiaceae',
57
+ 56: 'Combretaceae',
58
+ 57: 'Connaraceae',
59
+ 58: 'Coriariaceae',
60
+ 59: 'Crassulaceae',
61
+ 60: 'Crossosomataceae',
62
+ 61: 'Cucurbitaceae',
63
+ 62: 'Dichapetalaceae',
64
+ 63: 'Dilleniaceae',
65
+ 64: 'Dipterocarpaceae',
66
+ 65: 'Ebenaceae',
67
+ 66: 'Elaeocarpaceae',
68
+ 67: 'Ericaceae',
69
+ 68: 'Erythroxylaceae',
70
+ 69: 'Escalloniaceae',
71
+ 70: 'Eucommiaceae',
72
+ 71: 'Garryaceae',
73
+ 72: 'Gentianaceae',
74
+ 73: 'Geraniaceae',
75
+ 74: 'Gesneriaceae',
76
+ 75: 'Gnetaceae',
77
+ 76: 'Grossulariaceae',
78
+ 77: 'Gunneraceae',
79
+ 78: 'Hamamelidaceae',
80
+ 79: 'Hernandiaceae',
81
+ 80: 'Humiriaceae',
82
+ 81: 'Hydrangeaceae',
83
+ 82: 'Hypericaceae',
84
+ 83: 'Icacinaceae',
85
+ 84: 'Irvingiaceae',
86
+ 85: 'Iteaceae',
87
+ 86: 'Ixonanthaceae',
88
+ 87: 'Lamiaceae',
89
+ 88: 'Lardizabalaceae',
90
+ 89: 'Lecythidaceae',
91
+ 90: 'Liliaceae',
92
+ 91: 'Linaceae',
93
+ 92: 'Loganiaceae',
94
+ 93: 'Loranthaceae',
95
+ 94: 'Lythraceae',
96
+ 95: 'Magnoliaceae',
97
+ 96: 'Malpighiaceae',
98
+ 97: 'Marantaceae',
99
+ 98: 'Marcgraviaceae',
100
+ 99: 'Melastomataceae',
101
+ 100: 'Melianthaceae',
102
+ 101: 'Monimiaceae',
103
+ 102: 'Moraceae',
104
+ 103: 'Myricaceae',
105
+ 104: 'Myristicaceae',
106
+ 105: 'Nitrariaceae',
107
+ 106: 'Nothofagaceae',
108
+ 107: 'Nyctaginaceae',
109
+ 108: 'Ochnaceae',
110
+ 109: 'Olacaceae',
111
+ 110: 'Oleaceae',
112
+ 111: 'Onagraceae',
113
+ 112: 'Opiliaceae',
114
+ 113: 'Orchidaceae',
115
+ 114: 'Orobanchaceae',
116
+ 115: 'Oxalidaceae',
117
+ 116: 'Pandaceae',
118
+ 117: 'Papaveraceae',
119
+ 118: 'Paracryphiaceae',
120
+ 119: 'Passifloraceae',
121
+ 120: 'Pedaliaceae',
122
+ 121: 'Penaeaceae',
123
+ 122: 'Pentaphylacaceae',
124
+ 123: 'Peridiscaceae',
125
+ 124: 'Phyllanthaceae',
126
+ 125: 'Phytolaccaceae',
127
+ 126: 'Picramniaceae',
128
+ 127: 'Picrodendraceae',
129
+ 128: 'Piperaceae',
130
+ 129: 'Pittosporaceae',
131
+ 130: 'Platanaceae',
132
+ 131: 'Polemoniaceae',
133
+ 132: 'Polygalaceae',
134
+ 133: 'Polygonaceae',
135
+ 134: 'Primulaceae',
136
+ 135: 'Ranunculaceae',
137
+ 136: 'Rhabdodendraceae',
138
+ 137: 'Rhizophoraceae',
139
+ 138: 'Rubiaceae',
140
+ 139: 'Rutaceae',
141
+ 140: 'Sabiaceae',
142
+ 141: 'Santalaceae',
143
+ 142: 'Sapotaceae',
144
+ 143: 'Sarcolaenaceae',
145
+ 144: 'Saxifragaceae',
146
+ 145: 'Schisandraceae',
147
+ 146: 'Schoepfiaceae',
148
+ 147: 'Scrophulariaceae',
149
+ 148: 'Simaroubaceae',
150
+ 149: 'Siparunaceae',
151
+ 150: 'Smilacaceae',
152
+ 151: 'Solanaceae',
153
+ 152: 'Sphaerosepalaceae',
154
+ 153: 'Stachyuraceae',
155
+ 154: 'Staphyleaceae',
156
+ 155: 'Stegnospermataceae',
157
+ 156: 'Stemonuraceae',
158
+ 157: 'Styracaceae',
159
+ 158: 'Symplocaceae',
160
+ 159: 'Theaceae',
161
+ 160: 'Thymelaeaceae',
162
+ 161: 'Trigoniaceae',
163
+ 162: 'Trochodendraceae',
164
+ 163: 'Urticaceae',
165
+ 164: 'Verbenaceae',
166
+ 165: 'Violaceae',
167
+ 166: 'Vitaceae',
168
+ 167: 'Vochysiaceae',
169
+ 168: 'Winteraceae',
170
+ 169: 'Zygophyllaceae',
171
+ 170:'Araceae'}
172
+
173
+ dict_lu ={}
174
+ for i in range(171):
175
+ dict_lu[i] = lookup_170[i]
pre-requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ numpy==1.22.4
2
+ opencv-python-headless==4.5.5.64
3
+ openmim==0.1.5
4
+ torch==1.11.0
5
+ torchvision==0.12.0
6
+ tensorflow==2.8