Spaces:
Sleeping
Sleeping
use corresponding embeddings for each model
Browse files- app.py +2 -2
- closest_sample.py +28 -8
- test.py +1 -1
app.py
CHANGED
@@ -196,13 +196,13 @@ def get_embeddings(input_image,model_name):
|
|
196 |
|
197 |
def find_closest(input_image,model_name):
|
198 |
embedding = get_embeddings(input_image,model_name)
|
199 |
-
classes, paths = get_images(embedding)
|
200 |
#outputs = classes+paths
|
201 |
return classes,paths
|
202 |
|
203 |
def generate_diagram_closest(input_image,model_name,top_k):
|
204 |
embedding = get_embeddings(input_image,model_name)
|
205 |
-
diagram_path = get_diagram(embedding,top_k)
|
206 |
return diagram_path
|
207 |
|
208 |
def explain_image(input_image,model_name,explain_method,nb_samples):
|
|
|
196 |
|
197 |
def find_closest(input_image,model_name):
|
198 |
embedding = get_embeddings(input_image,model_name)
|
199 |
+
classes, paths = get_images(embedding,model_name)
|
200 |
#outputs = classes+paths
|
201 |
return classes,paths
|
202 |
|
203 |
def generate_diagram_closest(input_image,model_name,top_k):
|
204 |
embedding = get_embeddings(input_image,model_name)
|
205 |
+
diagram_path = get_diagram(embedding,top_k,model_name)
|
206 |
return diagram_path
|
207 |
|
208 |
def explain_image(input_image,model_name,explain_method,nb_samples):
|
closest_sample.py
CHANGED
@@ -9,9 +9,6 @@ import matplotlib.pyplot as plt
|
|
9 |
from collections import Counter
|
10 |
|
11 |
|
12 |
-
pca_fossils = pk.load(open('pca_fossils_142_resnet.pkl','rb'))
|
13 |
-
pca_leaves = pk.load(open('pca_leaves_142_resnet.pkl','rb'))
|
14 |
-
|
15 |
if not os.path.exists('dataset'):
|
16 |
REPO_ID='Serrelab/Fossils'
|
17 |
token = os.environ.get('READ_TOKEN')
|
@@ -20,8 +17,6 @@ if not os.path.exists('dataset'):
|
|
20 |
print("warning! A read token in env variables is needed for authentication.")
|
21 |
snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')
|
22 |
|
23 |
-
embedding_fossils = np.load('dataset/embedding_leaves_142_finer.npy')
|
24 |
-
#embedding_leaves = np.load('embedding_leaves.npy')
|
25 |
|
26 |
fossils_pd= pd.read_csv('fossils_paths.csv')
|
27 |
|
@@ -57,8 +52,20 @@ def download_public_image(url, destination_path):
|
|
57 |
else:
|
58 |
print(f"Failed to download image from bucket. Status code: {response.status_code}")
|
59 |
|
60 |
-
def get_images(embedding):
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
#pca_embedding_fossils = pca_fossils.transform(embedding_fossils[:,-1])
|
63 |
|
64 |
pca_d =pca_distance(pca_fossils,embedding,embedding_fossils,top_k=5)
|
@@ -93,7 +100,20 @@ def get_images(embedding):
|
|
93 |
|
94 |
return classes, local_paths
|
95 |
|
96 |
-
def get_diagram(embedding,top_k):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
#pca_embedding_fossils = pca_fossils.transform(embedding_fossils[:,-1])
|
99 |
|
|
|
9 |
from collections import Counter
|
10 |
|
11 |
|
|
|
|
|
|
|
12 |
if not os.path.exists('dataset'):
|
13 |
REPO_ID='Serrelab/Fossils'
|
14 |
token = os.environ.get('READ_TOKEN')
|
|
|
17 |
print("warning! A read token in env variables is needed for authentication.")
|
18 |
snapshot_download(repo_id=REPO_ID, token=token,repo_type='dataset',local_dir='dataset')
|
19 |
|
|
|
|
|
20 |
|
21 |
fossils_pd= pd.read_csv('fossils_paths.csv')
|
22 |
|
|
|
52 |
else:
|
53 |
print(f"Failed to download image from bucket. Status code: {response.status_code}")
|
54 |
|
55 |
+
def get_images(embedding,model_name):
|
56 |
+
|
57 |
+
if model_name in ['Rock 170','Mummified 170']:
|
58 |
+
pca_fossils = pk.load(open('pca_fossils_170_finer.pkl','rb'))
|
59 |
+
pca_leaves = pk.load(open('pca_leaves_170_finer.pkl','rb'))
|
60 |
+
embedding_fossils = np.load('dataset/embedding_fossils_170_finer.npy')
|
61 |
+
#embedding_leaves = np.load('embedding_leaves.npy')
|
62 |
+
elif model_name in ['Fossils 142']:
|
63 |
+
pca_fossils = pk.load(open('pca_fossils_142_resnet.pkl','rb'))
|
64 |
+
pca_leaves = pk.load(open('pca_leaves_142_resnet.pkl','rb'))
|
65 |
+
embedding_fossils = np.load('dataset/embedding_leaves_142_finer.npy')
|
66 |
+
#embedding_leaves = np.load('embedding_leaves.npy')
|
67 |
+
else:
|
68 |
+
print(f'{model_name} not recognized')
|
69 |
#pca_embedding_fossils = pca_fossils.transform(embedding_fossils[:,-1])
|
70 |
|
71 |
pca_d =pca_distance(pca_fossils,embedding,embedding_fossils,top_k=5)
|
|
|
100 |
|
101 |
return classes, local_paths
|
102 |
|
103 |
+
def get_diagram(embedding,top_k,model_name):
|
104 |
+
|
105 |
+
if model_name in ['Rock 170','Mummified 170']:
|
106 |
+
pca_fossils = pk.load(open('pca_fossils_170_finer.pkl','rb'))
|
107 |
+
pca_leaves = pk.load(open('pca_leaves_170_finer.pkl','rb'))
|
108 |
+
embedding_fossils = np.load('dataset/embedding_fossils_170_finer.npy')
|
109 |
+
#embedding_leaves = np.load('embedding_leaves.npy')
|
110 |
+
elif model_name in ['Fossils 142']:
|
111 |
+
pca_fossils = pk.load(open('pca_fossils_142_resnet.pkl','rb'))
|
112 |
+
pca_leaves = pk.load(open('pca_leaves_142_resnet.pkl','rb'))
|
113 |
+
embedding_fossils = np.load('dataset/embedding_leaves_142_finer.npy')
|
114 |
+
#embedding_leaves = np.load('embedding_leaves.npy')
|
115 |
+
else:
|
116 |
+
print(f'{model_name} not recognized')
|
117 |
|
118 |
#pca_embedding_fossils = pca_fossils.transform(embedding_fossils[:,-1])
|
119 |
|
test.py
CHANGED
@@ -23,7 +23,7 @@
|
|
23 |
import numpy as np
|
24 |
|
25 |
# Load the .npy file
|
26 |
-
embedding = np.load('
|
27 |
|
28 |
# Check the shape of the array
|
29 |
print(embedding.shape)
|
|
|
23 |
import numpy as np
|
24 |
|
25 |
# Load the .npy file
|
26 |
+
embedding = np.load('dataset/embedding_leaves_142_finer.npy')
|
27 |
|
28 |
# Check the shape of the array
|
29 |
print(embedding.shape)
|