File size: 23,527 Bytes
8cec513 6910e6a a5bf838 8cec513 6910e6a cc3cebf 1210dc8 71a43f8 131afdb a5bf838 7b55fe6 cc3cebf 6910e6a 44454ae 7b55fe6 553a86b 1210dc8 8cec513 f6060a6 992e742 f6060a6 8cec513 2414673 8cec513 094fc2c 8cec513 2642cae 8cec513 5b67ea9 5a5d474 8cec513 0865613 782b6a4 0865613 8cec513 782b6a4 8cec513 96deb6b 5f79b82 e923e62 5f79b82 9ec2077 2d8def6 44454ae 62eaee7 44454ae ff939d8 44454ae eb41f76 6b3b271 44454ae 19a600a eb41f76 6b3b271 19a600a eb41f76 6910e6a 6b3b271 eb41f76 1115c50 f5a828a 1115c50 2ce5c0d 802f966 33e1170 802f966 7b55fe6 8cec513 0ce1a65 2ea70eb 0ce1a65 7de912e cc3cebf 269c543 601b77b 269c543 cc3cebf 269c543 601b77b 269c543 cc3cebf 0f10080 131afdb 317fa25 131afdb 00568c1 2bb0b78 2ce5c0d 2bb0b78 59a31fe 3437149 3aad5f3 3c71c8d 553a86b 3c71c8d 7ee3c4c 2642cae 1d7da3b 48f4c05 52dd92a 48f4c05 52dd92a dd00657 15d3a65 4cb7900 553a86b 52dd92a 15d3a65 8487b97 bde3c5a 15d3a65 2824423 553a86b 52dd92a a5bf838 1c33eb8 b832a0a 1c33eb8 bfd27ba babf0fd 14668fa 1edc30c 553a86b 1edc30c 1072f28 553a86b 1a82082 1210dc8 c01015f 553a86b 1210dc8 1edc30c eea2731 553a86b eea2731 2f586d1 eea2731 19cf0bd cb9d3af 553a86b cb9d3af e79c8e6 af29d81 6b3b271 96bd6ae 6b3b271 96bd6ae 6b3b271 96bd6ae 00568c1 2bb0b78 00568c1 e30f1e3 62eaee7 e7d3e2d 590d603 e7d3e2d 5f79b82 383f88d 8c2e05a 383f88d e7d3e2d 9923b72 44c9d01 1bc1186 a1da39c ef24342 bdfefaf 6910e6a e923e62 6910e6a e923e62 6910e6a e923e62 6910e6a cda52dc e923e62 5a5d474 1d7da3b ab5cd28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
"""Module for working with config dicts"""
import json
import logging
import os
from pathlib import Path
from typing import Optional
import torch
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.utils.bench import log_gpu_memory_usage
from axolotl.utils.config.models.input.v0_4_1 import (
AxolotlConfigWCapabilities,
AxolotlInputConfig,
)
from axolotl.utils.dict import DictDefault
from axolotl.utils.models import load_model_config
LOG = logging.getLogger("axolotl")
def choose_device(cfg):
def get_device():
try:
if torch.cuda.is_available():
return f"cuda:{cfg.local_rank}"
if torch.backends.mps.is_available():
return "mps"
raise SystemError("No CUDA/mps device found")
except Exception: # pylint: disable=broad-exception-caught
return "cpu"
cfg.device = get_device()
if cfg.world_size == 1:
cfg.device_map = cfg.device_map or "auto"
else:
if cfg.device.startswith("cuda"):
cfg.device_map = {"": torch.cuda.current_device()}
else:
cfg.device_map = {"": cfg.device}
# in `accelerate launch`, we need to not pass through any device map and let
# accelerate figure out which parts of the model to put on which gpu
accelerate_vars = [var for var in os.environ if var.startswith("ACCELERATE_USE_")]
if accelerate_vars:
cfg.device_map = None
def normalize_config(cfg):
# setup some derived config / hyperparams
cfg.gradient_accumulation_steps = cfg.gradient_accumulation_steps or (
cfg.batch_size // cfg.micro_batch_size
)
cfg.batch_size = (
cfg.batch_size or cfg.micro_batch_size * cfg.gradient_accumulation_steps
)
if cfg.eval_batch_size is None:
cfg.eval_batch_size = cfg.micro_batch_size
cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
cfg.eval_table_size = cfg.eval_table_size or 0
cfg.eval_max_new_tokens = cfg.eval_max_new_tokens or 128
cfg.eval_causal_lm_metrics = cfg.eval_causal_lm_metrics or [
"sacrebleu",
"comet",
"ter",
"chrf",
]
choose_device(cfg)
cfg.ddp = cfg.ddp if cfg.ddp is not None else cfg.world_size != 1
if cfg.ddp:
cfg.device_map = {"": int(os.environ.get("LOCAL_RANK", 0))}
cfg.batch_size = cfg.batch_size * cfg.world_size
if cfg.bf16 == "auto":
if is_torch_bf16_gpu_available():
LOG.debug("bf16 support detected, enabling for this configuration.")
cfg.bf16 = True
else:
LOG.debug("bf16 support not detected, disabling for this configuration.")
cfg.bf16 = False
if cfg.fp16 is None:
cfg.fp16 = True
if cfg.device == "mps":
cfg.load_in_8bit = False
cfg.tf32 = False
if cfg.bf16:
cfg.fp16 = True
cfg.bf16 = False
else:
torch.backends.cuda.matmul.allow_tf32 = cfg.tf32 or False
if cfg.bf16:
cfg.fp16 = False
if cfg.bf16 or cfg.bfloat16:
cfg.torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
cfg.torch_dtype = torch.float16
else:
cfg.torch_dtype = torch.float32
if cfg.saves_per_epoch:
save_steps = 1.0 / (cfg.saves_per_epoch * cfg.num_epochs)
if save_steps < 1.0: # prevent saves on every step
cfg.save_steps = save_steps
if (cfg.val_set_size or cfg.test_datasets) and cfg.evals_per_epoch:
eval_steps = 1.0 / (cfg.evals_per_epoch * cfg.num_epochs)
if eval_steps < 1.0: # prevent evals on every step
cfg.eval_steps = eval_steps
cfg.dataset_processes = cfg.dataset_processes or os.cpu_count()
if not cfg.base_model_config:
cfg.base_model_config = cfg.base_model
model_config = load_model_config(cfg)
cfg.model_config_type = model_config.model_type
cfg.tokenizer_config = (
cfg.tokenizer_config or cfg.base_model_config or cfg.base_model
)
# figure out if the model is llama
cfg.is_llama_derived_model = (
(hasattr(model_config, "model_type") and model_config.model_type == "llama")
or cfg.is_llama_derived_model
or "llama" in cfg.base_model.lower()
or (cfg.type_of_model and "llama" in cfg.type_of_model.lower())
)
# figure out if the model is falcon
cfg.is_falcon_derived_model = (
(
hasattr(model_config, "model_type")
and model_config.model_type
in [
"falcon",
"RefinedWebModel",
"RefinedWeb",
]
)
or cfg.is_falcon_derived_model
or "falcon" in cfg.base_model.lower()
or (cfg.type_of_model and "rwforcausallm" in cfg.type_of_model.lower())
)
cfg.is_mistral_derived_model = (
(
hasattr(model_config, "model_type")
and model_config.model_type
in [
"mistral",
]
)
or cfg.is_mistral_derived_model
or "mistral" in cfg.base_model.lower().split("/")[-1]
or (cfg.type_of_model and "mistral" in cfg.type_of_model.lower())
)
cfg.is_qwen_derived_model = (
hasattr(model_config, "model_type")
and model_config.model_type
in [
"qwen",
]
) or cfg.is_qwen_derived_model
if isinstance(cfg.pretraining_dataset, dict):
cfg.pretraining_dataset = [cfg.pretraining_dataset]
if (
cfg.gradient_checkpointing
and cfg.unfrozen_parameters is None
and cfg.gradient_checkpointing_kwargs is None
and cfg.rl is None
):
cfg.gradient_checkpointing_kwargs = {"use_reentrant": True}
log_gpu_memory_usage(LOG, "baseline", cfg.device)
def normalize_cfg_datasets(cfg):
"""
helpers for mapping chat_template to various dataset configurations as necessary
"""
if cfg.chat_template and cfg.chat_template == "chatml":
if cfg.datasets:
for idx, ds_cfg in enumerate(cfg.datasets):
if ds_cfg.type == "sharegpt" and not ds_cfg.conversation:
LOG.info(
f"updating dataset {ds_cfg.path} with `conversation: chatml` to match your chat_template"
)
cfg.datasets[idx].conversation = "chatml"
if ds_cfg.type == "orpo.chat_template" and not ds_cfg.chat_template:
LOG.info(
f"updating dataset {ds_cfg.path} with `chat_template: chatml` to match your chat_template"
)
cfg.datasets[idx].chat_template = "chatml"
def validate_config(cfg: DictDefault, capabilities: Optional[dict] = None):
if capabilities:
return DictDefault(
dict(
AxolotlConfigWCapabilities(
**cfg.to_dict(), capabilities=capabilities
).model_dump(exclude_none=True)
)
)
return DictDefault(
dict(AxolotlInputConfig(**cfg.to_dict()).model_dump(exclude_none=True))
)
def legacy_validate_config(cfg):
"""
This is a "pre-validation" step that handles the yaml configuration before we have any
information about the model architecture
"""
if is_torch_bf16_gpu_available():
if not cfg.bf16 and not cfg.bfloat16:
LOG.info("bf16 support detected, but not enabled for this configuration.")
else:
if (
not cfg.merge_lora
and not cfg.is_preprocess
and (cfg.bf16 is True or cfg.bfloat16 is True)
):
raise ValueError(
"bf16 requested, but AMP is not supported on this GPU. Requires Ampere series or above."
)
if (
# pylint: disable=too-many-boolean-expressions
not (cfg.bf16 or cfg.bfloat16)
and (cfg.fp16 or cfg.float16)
and not cfg.adapter
and not cfg.flash_attention
and cfg.sample_packing
):
LOG.warning(
"Full fine tune w/o FA2 w/ sample packing and fp16/float16 is likely to raise errors. Try LoRA."
)
# ValueError: Attempting to unscale FP16 gradients.
# OR
# RuntimeError: expected mat1 and mat2 to have the same dtype, but got: float != c10::Half
if cfg.max_packed_sequence_len:
raise DeprecationWarning("`max_packed_sequence_len` is no longer supported")
if cfg.sample_packing and cfg.rl:
raise ValueError("`sample_packing: true` does not work with RLHF training")
if cfg.sample_packing and not cfg.pad_to_sequence_len:
LOG.warning(
"`pad_to_sequence_len: true` is recommended when using sample_packing"
)
if cfg.gradient_accumulation_steps and cfg.batch_size:
raise ValueError(
"please set only one of gradient_accumulation_steps or batch_size"
)
if cfg.batch_size:
LOG.warning(
"%s\n%s",
"batch_size is not recommended. Please use gradient_accumulation_steps instead.",
"To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
)
if (
cfg.eval_batch_size
and cfg.micro_batch_size
and cfg.eval_batch_size != cfg.micro_batch_size
):
LOG.warning(
"eval_batch_size != micro_batch_size. This can lead to VRAM instability."
)
if cfg.adapter == "qlora":
if cfg.merge_lora:
# can't merge qlora if loaded in 8bit or 4bit
if cfg.load_in_8bit:
raise ValueError("Can't merge qlora if loaded in 8bit")
if cfg.gptq:
raise ValueError("Can't merge qlora if gptq")
if cfg.load_in_4bit:
raise ValueError("Can't merge qlora if loaded in 4bit")
else:
if cfg.load_in_8bit:
raise ValueError("Can't load qlora in 8bit")
if cfg.gptq:
raise ValueError("Can't load qlora if gptq")
if not cfg.load_in_4bit:
raise ValueError("Require cfg.load_in_4bit to be True for qlora")
if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
raise ValueError("Fused modules are not supported with QLoRA")
loftq = cfg.peft and cfg.peft.loftq_config and cfg.peft.loftq_config.loftq_bits
if not cfg.load_in_8bit and cfg.adapter == "lora" and not loftq:
LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
if cfg.adapter == "lora" and (cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp):
raise ValueError("Fused modules are not supported with LoRA")
if cfg.adapter and cfg.peft_layers_to_transform and cfg.unfrozen_parameters:
raise ValueError(
"`unfrozen_parameters` used with `peft_layers_to_transform` can have unexpected behavior."
)
if cfg.relora_steps:
if cfg.adapter not in ("lora", "qlora"):
raise ValueError("cfg.adapter must be lora or qlora to use ReLoRA")
if cfg.fsdp:
raise ValueError("fsdp not supported with ReLoRA")
if cfg.deepspeed:
raise ValueError("deepspeed not supported with ReLoRA")
if cfg.lr_scheduler == "one_cycle":
raise ValueError("ReLoRA is not compatible with the one_cycle scheduler")
if cfg.flash_attn_fuse_qkv or cfg.flash_attn_fuse_mlp:
raise ValueError("Fused modules are not supported with ReLoRA")
if cfg.trust_remote_code:
LOG.warning(
"`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
)
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
raise ValueError(
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
)
if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
raise ValueError("FSDP is not supported for falcon models")
if (
cfg.base_model and "mpt" in cfg.base_model.lower()
) and cfg.gradient_checkpointing:
raise ValueError("gradient_checkpointing is not supported for MPT models")
if cfg.flash_optimum is True:
if cfg.adapter:
LOG.warning("BetterTransformers probably doesn't work with PEFT adapters")
if cfg.fp16 or cfg.bf16:
raise ValueError("AMP is not supported with BetterTransformer")
if cfg.float16 is not True and cfg.bfloat16 is not True:
LOG.warning(
"You should probably set bfloat16 or float16 to true to "
"load the model in float16 for BetterTransformers"
)
if int(torch.__version__.split(".", maxsplit=1)[0]) < 2:
LOG.warning("torch>=2.0.0 required")
raise ValueError(
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
)
if cfg.pretraining_dataset and cfg.group_by_length:
LOG.warning(
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
)
if cfg.pretraining_dataset and not cfg.max_steps:
raise ValueError(
"max_steps must be set when using iterable pretraining_dataset, Trainer can't infer length and schedule optimizer/learning rate without it!"
)
if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
not cfg.optimizer or "adamw" not in cfg.optimizer
):
LOG.warning("adamw hyperparameters found, but no adamw optimizer set")
if cfg.push_to_hub_model_id:
raise ValueError(
"push_to_hub_model_id is deprecated. Please use hub_model_id instead."
)
if cfg.hub_model_id and not (cfg.save_steps or cfg.saves_per_epoch):
LOG.warning(
"hub_model_id is set without any models being saved. To save a model, set either save_steps or saves_per_epoch."
)
if cfg.gptq and cfg.revision_of_model:
raise ValueError(
"revision_of_model is not supported for GPTQ models. "
+ "Please download the model from HuggingFace Hub manually for correct branch, "
+ "point to its path, and remove revision_of_model from the config."
)
# if cfg.sample_packing and cfg.sdp_attention:
# # incompatible due to bug w/ accelerate causing 0.0 loss when using llama2
# raise ValueError(
# "sample_packing not compatible with sdp_attention. Use flash_attention"
# )
if cfg.sample_packing and cfg.xformers_attention:
raise ValueError(
"sample_packing not compatible with xformers_attention. Use flash_attention"
)
if cfg.sample_packing and cfg.sdp_attention and (cfg.bfloat16 or cfg.bf16):
# https://github.com/pytorch/pytorch/blob/1b03423526536b5f3d35bdfa95ccc6197556cf9b/test/test_transformers.py#L2440-L2450
LOG.warning(
"sample_packing & torch sdpa with bf16 is unsupported may results in 0.0 loss. "
"This may work on H100s."
)
if cfg.early_stopping_patience:
if not cfg.save_steps or not cfg.eval_steps:
raise ValueError(
"`early_stopping_patience` requires save_steps and eval_steps to be set. eval_steps should evenly divide save_steps."
)
if cfg.save_steps % cfg.eval_steps != 0:
raise ValueError(
"`early_stopping_patience` requires that eval_steps should evenly divide save_steps."
)
if cfg.datasets:
for idx, ds_cfg in enumerate(cfg.datasets):
if not ds_cfg.type:
continue
if ds_cfg.type == "sharegpt:chat":
LOG.warning(
PendingDeprecationWarning(
"`type: sharegpt:chat` will soon be deprecated. simply use `type: sharegpt` instead."
)
)
cfg.datasets[idx].type = "sharegpt"
if "sharegpt_simple" in ds_cfg.type:
LOG.warning(
PendingDeprecationWarning(
"`type: sharegpt_simple` will soon be deprecated. simply use `type: sharegpt` instead."
)
)
cfg.datasets[idx].type = cfg.datasets[idx].type.replace(
"sharegpt_simple", "sharegpt"
)
if cfg.saves_per_epoch and cfg.save_steps:
raise ValueError(
"save_steps and saves_per_epoch are mutually exclusive and cannot be used together."
)
if cfg.saves_per_epoch and cfg.save_strategy and cfg.save_strategy != "steps":
raise ValueError(
"save_strategy must be empty or set to `steps` when used with saves_per_epoch."
)
if cfg.evals_per_epoch and cfg.eval_steps:
raise ValueError(
"eval_steps and evals_per_epoch are mutually exclusive and cannot be used together."
)
if (
cfg.evals_per_epoch
and cfg.evaluation_strategy
and cfg.evaluation_strategy != "steps"
):
raise ValueError(
"evaluation_strategy must be empty or set to `steps` when used with evals_per_epoch."
)
if cfg.save_strategy and cfg.save_steps and cfg.save_strategy != "steps":
raise ValueError(
"save_strategy and save_steps mismatch. Please set save_strategy to 'steps' or remove save_steps."
)
if (
cfg.evaluation_strategy
and cfg.eval_steps
and cfg.evaluation_strategy != "steps"
):
raise ValueError(
"evaluation_strategy and eval_steps mismatch. Please set evaluation_strategy to 'steps' or remove eval_steps."
)
if (
cfg.val_set_size == 0
and (cfg.eval_steps or cfg.evaluation_strategy)
and not cfg.test_datasets
):
raise ValueError(
"eval_steps and evaluation_strategy are not supported with val_set_size == 0"
)
if (
cfg.sample_packing
and cfg.eval_table_size
and cfg.eval_sample_packing is not False
):
raise ValueError(
"eval_table_size and eval_sample_packing are not supported together with sample_packing. Please set 'eval_sample_packing' to false."
)
if not cfg.adapter and (cfg.load_in_8bit or cfg.load_in_4bit):
raise ValueError(
"load_in_8bit and load_in_4bit are not supported without setting an adapter."
"If you want to full finetune, please turn off load_in_8bit and load_in_4bit."
)
if cfg.rope_scaling:
LOG.warning("`rope_scaling` should now be be a key under `model_config`")
if cfg.wandb_run_id and not cfg.wandb_name:
cfg.wandb_name = cfg.wandb_run_id
LOG.warning(
"wandb_run_id sets the ID of the run. If you would like to set the name, please use wandb_name instead."
)
if cfg.noisy_embedding_alpha is not None:
# Deprecated, use neftune_noise_alpha
LOG.warning("noisy_embedding_alpha is deprecated, use neftune_noise_alpha")
if cfg.neftune_noise_alpha is None:
cfg.neftune_noise_alpha = cfg.noisy_embedding_alpha
else:
# User is providing both; bail and have them sort out their settings
raise ValueError(
"noisy_embedding_alpha is deprecated, use neftune_noise_alpha; both are set, please remove the deprecated noisy_embedding_alpha setting"
)
if cfg.neftune_noise_alpha is not None and cfg.neftune_noise_alpha <= 0.0:
raise ValueError("neftune_noise_alpha must be > 0.0")
if cfg.max_memory is not None and cfg.gpu_memory_limit is not None:
raise ValueError(
"max_memory and gpu_memory_limit are mutually exclusive and cannot be used together."
)
if (
cfg.unfrozen_parameters
and cfg.gradient_checkpointing_kwargs
and cfg.gradient_checkpointing_kwargs.use_reentrant is True
):
# https://github.com/huggingface/transformers/issues/21381
raise ValueError(
"`use_reentrant` must be false when used with partially frozen model."
)
if cfg.deepspeed and Path(cfg.deepspeed).is_file():
with open(cfg.deepspeed, encoding="utf-8") as file:
contents = file.read()
deepspeed_cfg: DictDefault = DictDefault(json.loads(contents))
if cfg.flash_attention:
if (
deepspeed_cfg.zero_optimization
and deepspeed_cfg.zero_optimization.stage == 3
):
if not (
(
deepspeed_cfg.bf16
and deepspeed_cfg.bf16.enabled # pylint: disable=no-member
is True
)
or (
deepspeed_cfg.fp16
and deepspeed_cfg.fp16.enabled # pylint: disable=no-member
is True
)
):
raise ValueError(
"bf16.enabled or fp16.enabled must be set to true when using ZeRO-3 with flash-attention"
)
if "8bit" in cfg.optimizer and deepspeed_cfg.optimizer:
LOG.warning(
f"conflicting optimizer: {cfg.optimizer} used alongside deepspeed optimizer."
)
if cfg.test_datasets and cfg.val_set_size:
raise ValueError(
"non-zero val_set_size should not be used with test_datasets configuration"
)
if cfg.fsdp and "bnb" in cfg.optimizer:
raise ValueError(f"FSDP not compatible with {cfg.optimizer}")
if cfg.do_causal_lm_eval and cfg.eval_sample_packing:
raise ValueError(
"do_causal_lm_eval is enabled, eval_sample_packing must be set to False"
)
if cfg.eval_causal_lm_metrics:
supported_metrics = ["sacrebleu", "comet", "ter", "chrf"]
if not isinstance(cfg.eval_causal_lm_metrics, list):
raise ValueError("eval_causal_lm_metrics must be a list")
# only ["sacrebleu", "comet", "ter", "chrf"] supported
if set(cfg.eval_causal_lm_metrics) - set(supported_metrics):
raise ValueError(
f"eval_causal_lm_metrics must be one of {supported_metrics}"
)
# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
# no 8bit adaAmw w bf16
# GPT-NeoX
# evals broken when extending context len
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
# attention_mask = causal_mask + attention_mask
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3
|