winglian commited on
Commit
1210dc8
·
1 Parent(s): 488a67d

more tweaks to do pre-training with bettertransformers

Browse files
scripts/finetune.py CHANGED
@@ -14,6 +14,7 @@ import torch
14
  import yaml
15
 
16
  # add src to the pythonpath so we don't need to pip install this
 
17
  from optimum.bettertransformer import BetterTransformer
18
  from transformers import GenerationConfig, TextStreamer
19
 
@@ -214,6 +215,7 @@ def train(
214
  train_dataset = load_pretraining_dataset(
215
  pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
216
  )
 
217
  eval_dataset = None
218
 
219
  if cfg.debug or "debug" in kwargs:
 
14
  import yaml
15
 
16
  # add src to the pythonpath so we don't need to pip install this
17
+ from datasets import Dataset
18
  from optimum.bettertransformer import BetterTransformer
19
  from transformers import GenerationConfig, TextStreamer
20
 
 
215
  train_dataset = load_pretraining_dataset(
216
  pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
217
  )
218
+ train_dataset = Dataset.from_list(list(train_dataset))
219
  eval_dataset = None
220
 
221
  if cfg.debug or "debug" in kwargs:
src/axolotl/utils/callbacks.py CHANGED
@@ -2,6 +2,7 @@
2
 
3
  import os
4
 
 
5
  from transformers import (
6
  TrainerCallback,
7
  TrainerControl,
@@ -30,3 +31,26 @@ class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-
30
  kwargs["model"].save_pretrained(peft_model_path)
31
 
32
  return control
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import os
4
 
5
+ from optimum.bettertransformer import BetterTransformer
6
  from transformers import (
7
  TrainerCallback,
8
  TrainerControl,
 
31
  kwargs["model"].save_pretrained(peft_model_path)
32
 
33
  return control
34
+
35
+
36
+ class SaveBetterTransformerModelCallback(
37
+ TrainerCallback
38
+ ): # pylint: disable=too-few-public-methods
39
+ """Callback to save the BatterTransformer wrapped model"""
40
+
41
+ def on_save(
42
+ self,
43
+ args: TrainingArguments,
44
+ state: TrainerState,
45
+ control: TrainerControl,
46
+ **kwargs,
47
+ ):
48
+ checkpoint_folder = os.path.join(
49
+ args.output_dir,
50
+ f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
51
+ )
52
+
53
+ model = BetterTransformer.reverse(kwargs["model"])
54
+ model.save_pretrained(checkpoint_folder)
55
+
56
+ return control
src/axolotl/utils/data.py CHANGED
@@ -409,14 +409,16 @@ class PretrainingDatasetWrapper(IterableDataset):
409
  buffer = []
410
  for sample in load_dataset(
411
  self.dataset_path,
412
- name="all",
413
- split="train",
414
- streaming=True,
415
- ).shuffle(buffer_size=10000):
416
  buffer += self.tokenizer(sample["text"])["input_ids"]
417
  buffer += [self.tokenizer.eos_token_id]
418
  while len(buffer) > self.max_tokens:
419
- yield torch.tensor(buffer[: self.max_tokens])
 
 
 
 
 
420
  buffer = buffer[self.max_tokens :]
421
 
422
 
 
409
  buffer = []
410
  for sample in load_dataset(
411
  self.dataset_path,
412
+ )["train"].shuffle():
 
 
 
413
  buffer += self.tokenizer(sample["text"])["input_ids"]
414
  buffer += [self.tokenizer.eos_token_id]
415
  while len(buffer) > self.max_tokens:
416
+ input_ids = torch.tensor(buffer[: self.max_tokens])
417
+ yield {
418
+ "input_ids": input_ids,
419
+ "attention_mask": torch.ones(input_ids.size()),
420
+ "labels": input_ids,
421
+ }
422
  buffer = buffer[self.max_tokens :]
423
 
424
 
src/axolotl/utils/models.py CHANGED
@@ -10,8 +10,8 @@ from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401
10
  import bitsandbytes as bnb
11
  import torch
12
  import transformers
13
- from transformers import PreTrainedModel # noqa: F401
14
  from optimum.bettertransformer import BetterTransformer
 
15
  from transformers import (
16
  AutoConfig,
17
  AutoModelForCausalLM,
@@ -136,7 +136,7 @@ def load_model(
136
  logging.info("patching with xpos rope")
137
  replace_llama_rope_with_xpos_rope()
138
 
139
- if cfg.bf16:
140
  torch_dtype = torch.bfloat16
141
  elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
142
  torch_dtype = torch.float16
 
10
  import bitsandbytes as bnb
11
  import torch
12
  import transformers
 
13
  from optimum.bettertransformer import BetterTransformer
14
+ from transformers import PreTrainedModel # noqa: F401
15
  from transformers import (
16
  AutoConfig,
17
  AutoModelForCausalLM,
 
136
  logging.info("patching with xpos rope")
137
  replace_llama_rope_with_xpos_rope()
138
 
139
+ if cfg.bf16 or cfg.bfloat16:
140
  torch_dtype = torch.bfloat16
141
  elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
142
  torch_dtype = torch.float16
src/axolotl/utils/trainer.py CHANGED
@@ -16,7 +16,10 @@ from torch.optim.lr_scheduler import OneCycleLR
16
  from transformers import EarlyStoppingCallback, Trainer
17
  from transformers.trainer_pt_utils import get_parameter_names
18
 
19
- from axolotl.utils.callbacks import SavePeftModelCallback
 
 
 
20
  from axolotl.utils.schedulers import InterpolatingLogScheduler
21
 
22
 
@@ -228,6 +231,9 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
228
  ]: # only save in rank 0
229
  callbacks.append(SavePeftModelCallback)
230
 
 
 
 
231
  data_collator_kwargs = {
232
  "padding": True,
233
  }
 
16
  from transformers import EarlyStoppingCallback, Trainer
17
  from transformers.trainer_pt_utils import get_parameter_names
18
 
19
+ from axolotl.utils.callbacks import (
20
+ SaveBetterTransformerModelCallback,
21
+ SavePeftModelCallback,
22
+ )
23
  from axolotl.utils.schedulers import InterpolatingLogScheduler
24
 
25
 
 
231
  ]: # only save in rank 0
232
  callbacks.append(SavePeftModelCallback)
233
 
234
+ if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
235
+ callbacks.append(SaveBetterTransformerModelCallback)
236
+
237
  data_collator_kwargs = {
238
  "padding": True,
239
  }
src/axolotl/utils/validation.py CHANGED
@@ -1,8 +1,10 @@
1
  """Module for validating config files"""
2
 
3
  import logging
 
4
  import torch
5
 
 
6
  def validate_config(cfg):
7
  if cfg.gradient_accumulation_steps and cfg.batch_size:
8
  raise ValueError(
@@ -59,14 +61,20 @@ def validate_config(cfg):
59
 
60
  if cfg.flash_optimum is True:
61
  if cfg.adapter:
62
- logging.warning("BetterTransformers probably doesn't work with PEFT adapters")
 
 
63
  if cfg.fp16 or cfg.bf16:
64
  raise ValueError("AMP is not supported with BetterTransformer")
65
  if cfg.float16 is not True:
66
- logging.warning("You should probably set float16 to true to load the model in float16 for BetterTransformers")
67
- if torch.__version__.split(".")[0] < 2:
 
 
68
  logging.warning("torch>=2.0.0 required")
69
- raise ValueError(f"flash_optimum for BetterTransformers may not be used with {torch.__version__}")
 
 
70
 
71
  # TODO
72
  # MPT 7b
 
1
  """Module for validating config files"""
2
 
3
  import logging
4
+
5
  import torch
6
 
7
+
8
  def validate_config(cfg):
9
  if cfg.gradient_accumulation_steps and cfg.batch_size:
10
  raise ValueError(
 
61
 
62
  if cfg.flash_optimum is True:
63
  if cfg.adapter:
64
+ logging.warning(
65
+ "BetterTransformers probably doesn't work with PEFT adapters"
66
+ )
67
  if cfg.fp16 or cfg.bf16:
68
  raise ValueError("AMP is not supported with BetterTransformer")
69
  if cfg.float16 is not True:
70
+ logging.warning(
71
+ "You should probably set float16 to true to load the model in float16 for BetterTransformers"
72
+ )
73
+ if int(torch.__version__.split(".")[0]) < 2:
74
  logging.warning("torch>=2.0.0 required")
75
+ raise ValueError(
76
+ f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
77
+ )
78
 
79
  # TODO
80
  # MPT 7b