be more robust about checking embedding modules for lora finetunes (#1074) [skip ci]
Browse files* be more robust about checking embedding modules for lora finetunes
* update dynamic error message
- src/axolotl/utils/config.py +4 -14
- src/axolotl/utils/lora_embeddings.py +12 -0
- src/axolotl/utils/models.py +27 -7
- tests/test_validation.py +61 -9
src/axolotl/utils/config.py
CHANGED
@@ -151,6 +151,10 @@ def normalize_config(cfg):
|
|
151 |
|
152 |
|
153 |
def validate_config(cfg):
|
|
|
|
|
|
|
|
|
154 |
if is_torch_bf16_gpu_available():
|
155 |
if not cfg.bf16 and not cfg.bfloat16:
|
156 |
LOG.info("bf16 support detected, but not enabled for this configuration.")
|
@@ -443,20 +447,6 @@ def validate_config(cfg):
|
|
443 |
if cfg.neftune_noise_alpha is not None and cfg.neftune_noise_alpha <= 0.0:
|
444 |
raise ValueError("neftune_noise_alpha must be > 0.0")
|
445 |
|
446 |
-
if (
|
447 |
-
cfg.adapter
|
448 |
-
and cfg.tokens
|
449 |
-
and (
|
450 |
-
not cfg.lora_modules_to_save
|
451 |
-
or not all(
|
452 |
-
x in cfg.lora_modules_to_save for x in ["embed_tokens", "lm_head"]
|
453 |
-
)
|
454 |
-
)
|
455 |
-
):
|
456 |
-
raise ValueError(
|
457 |
-
"lora_modules_to_save not properly set yet adding new tokens. Please add `embed_tokens` and `lm_head` to `lora_modules_to_save`."
|
458 |
-
)
|
459 |
-
|
460 |
if cfg.max_memory is not None and cfg.gpu_memory_limit is not None:
|
461 |
raise ValueError(
|
462 |
"max_memory and gpu_memory_limit are mutually exclusive and cannot be used together."
|
|
|
151 |
|
152 |
|
153 |
def validate_config(cfg):
|
154 |
+
"""
|
155 |
+
This is a "pre-validation" step that handles the yaml configuration before we have any
|
156 |
+
information about the model architecture
|
157 |
+
"""
|
158 |
if is_torch_bf16_gpu_available():
|
159 |
if not cfg.bf16 and not cfg.bfloat16:
|
160 |
LOG.info("bf16 support detected, but not enabled for this configuration.")
|
|
|
447 |
if cfg.neftune_noise_alpha is not None and cfg.neftune_noise_alpha <= 0.0:
|
448 |
raise ValueError("neftune_noise_alpha must be > 0.0")
|
449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
if cfg.max_memory is not None and cfg.gpu_memory_limit is not None:
|
451 |
raise ValueError(
|
452 |
"max_memory and gpu_memory_limit are mutually exclusive and cannot be used together."
|
src/axolotl/utils/lora_embeddings.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
helpers for lora embeddings
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
def get_linear_embedding_layers(model_type):
|
7 |
+
"""
|
8 |
+
returns the linear embedding layers needed for loras, dependent on the model arch
|
9 |
+
"""
|
10 |
+
if model_type == "phi-msft":
|
11 |
+
return ["embd", "lm_head.linear"]
|
12 |
+
return ["lm_head", "embed_tokens"]
|
src/axolotl/utils/models.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
import logging
|
3 |
import math
|
4 |
import os
|
5 |
-
from typing import Any, Optional, Tuple # noqa: F401
|
6 |
|
7 |
import addict
|
8 |
import bitsandbytes as bnb
|
@@ -28,12 +28,16 @@ from axolotl.prompt_tokenizers import LLAMA_DEFAULT_EOS_TOKEN
|
|
28 |
from axolotl.utils.bench import log_gpu_memory_usage
|
29 |
from axolotl.utils.chat_templates import chat_templates
|
30 |
from axolotl.utils.dict import DictDefault
|
|
|
31 |
|
32 |
LOG = logging.getLogger("axolotl")
|
33 |
|
34 |
|
35 |
-
def check_model_config(cfg: DictDefault, model_config: AutoConfig):
|
36 |
-
quant_config_exists =
|
|
|
|
|
|
|
37 |
quant_config_method_is_gptq = (
|
38 |
quant_config_exists
|
39 |
and "quant_method" in model_config.quantization_config
|
@@ -52,6 +56,20 @@ def check_model_config(cfg: DictDefault, model_config: AutoConfig):
|
|
52 |
"Please use the `gptq` flag to train quantized model or point to a non-quantized model."
|
53 |
)
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def load_model_config(cfg):
|
57 |
model_config_name = cfg.base_model_config or cfg.base_model
|
@@ -139,6 +157,7 @@ def load_tokenizer(cfg):
|
|
139 |
setattr(tokenizer, attr_name, "<|endoftext|>")
|
140 |
|
141 |
if cfg.special_tokens:
|
|
|
142 |
for k, val in cfg.special_tokens.items():
|
143 |
# check if new special token is not already in tokenizer and
|
144 |
# is adapter training to make sure lora_modules_to_save is set
|
@@ -149,14 +168,15 @@ def load_tokenizer(cfg):
|
|
149 |
and (
|
150 |
not cfg.lora_modules_to_save
|
151 |
or not all(
|
152 |
-
x in cfg.lora_modules_to_save
|
153 |
-
for x in ["embed_tokens", "lm_head"]
|
154 |
)
|
155 |
)
|
156 |
-
and (model_config.model_type in ["llama", "mistral", "mixtral"])
|
157 |
):
|
|
|
|
|
|
|
158 |
raise ValueError(
|
159 |
-
"Please set lora_modules_to_save to
|
160 |
)
|
161 |
|
162 |
tokenizer.add_special_tokens(
|
|
|
2 |
import logging
|
3 |
import math
|
4 |
import os
|
5 |
+
from typing import Any, Optional, Tuple, Union # noqa: F401
|
6 |
|
7 |
import addict
|
8 |
import bitsandbytes as bnb
|
|
|
28 |
from axolotl.utils.bench import log_gpu_memory_usage
|
29 |
from axolotl.utils.chat_templates import chat_templates
|
30 |
from axolotl.utils.dict import DictDefault
|
31 |
+
from axolotl.utils.lora_embeddings import get_linear_embedding_layers
|
32 |
|
33 |
LOG = logging.getLogger("axolotl")
|
34 |
|
35 |
|
36 |
+
def check_model_config(cfg: DictDefault, model_config: Union[AutoConfig, DictDefault]):
|
37 |
+
quant_config_exists = (
|
38 |
+
hasattr(model_config, "quantization_config")
|
39 |
+
and model_config.quantization_config
|
40 |
+
)
|
41 |
quant_config_method_is_gptq = (
|
42 |
quant_config_exists
|
43 |
and "quant_method" in model_config.quantization_config
|
|
|
56 |
"Please use the `gptq` flag to train quantized model or point to a non-quantized model."
|
57 |
)
|
58 |
|
59 |
+
lora_modules_to_save = get_linear_embedding_layers(model_config.model_type)
|
60 |
+
if (
|
61 |
+
cfg.adapter
|
62 |
+
and cfg.tokens
|
63 |
+
and (
|
64 |
+
not cfg.lora_modules_to_save
|
65 |
+
or not all(x in cfg.lora_modules_to_save for x in lora_modules_to_save)
|
66 |
+
)
|
67 |
+
):
|
68 |
+
lora_modules_to_save = ", ".join(map(lambda x: f"`{x}`", lora_modules_to_save))
|
69 |
+
raise ValueError(
|
70 |
+
f"`lora_modules_to_save` not properly set when adding new tokens. Please include {lora_modules_to_save} in `lora_modules_to_save`."
|
71 |
+
)
|
72 |
+
|
73 |
|
74 |
def load_model_config(cfg):
|
75 |
model_config_name = cfg.base_model_config or cfg.base_model
|
|
|
157 |
setattr(tokenizer, attr_name, "<|endoftext|>")
|
158 |
|
159 |
if cfg.special_tokens:
|
160 |
+
lora_modules_to_save = get_linear_embedding_layers(model_config.model_type)
|
161 |
for k, val in cfg.special_tokens.items():
|
162 |
# check if new special token is not already in tokenizer and
|
163 |
# is adapter training to make sure lora_modules_to_save is set
|
|
|
168 |
and (
|
169 |
not cfg.lora_modules_to_save
|
170 |
or not all(
|
171 |
+
x in cfg.lora_modules_to_save for x in lora_modules_to_save
|
|
|
172 |
)
|
173 |
)
|
|
|
174 |
):
|
175 |
+
lora_modules_to_save = ", ".join(
|
176 |
+
[f"`{x}`" for x in lora_modules_to_save]
|
177 |
+
)
|
178 |
raise ValueError(
|
179 |
+
f"Please set lora_modules_to_save to {lora_modules_to_save} when using an adapter and changing the special tokens."
|
180 |
)
|
181 |
|
182 |
tokenizer.add_special_tokens(
|
tests/test_validation.py
CHANGED
@@ -10,12 +10,13 @@ from transformers.utils import is_torch_bf16_gpu_available
|
|
10 |
|
11 |
from axolotl.utils.config import validate_config
|
12 |
from axolotl.utils.dict import DictDefault
|
|
|
13 |
from axolotl.utils.wandb_ import setup_wandb_env_vars
|
14 |
|
15 |
|
16 |
-
class
|
17 |
"""
|
18 |
-
|
19 |
"""
|
20 |
|
21 |
_caplog: Optional[pytest.LogCaptureFixture] = None
|
@@ -24,6 +25,12 @@ class ValidationTest(unittest.TestCase):
|
|
24 |
def inject_fixtures(self, caplog):
|
25 |
self._caplog = caplog
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def test_load_4bit_deprecate(self):
|
28 |
cfg = DictDefault(
|
29 |
{
|
@@ -687,16 +694,23 @@ class ValidationTest(unittest.TestCase):
|
|
687 |
|
688 |
validate_config(cfg)
|
689 |
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
cfg = DictDefault(
|
692 |
{"adapter": "qlora", "load_in_4bit": True, "tokens": ["<|imstart|>"]}
|
693 |
)
|
|
|
694 |
|
695 |
with pytest.raises(
|
696 |
ValueError,
|
697 |
-
match=r"
|
698 |
):
|
699 |
-
|
700 |
|
701 |
cfg = DictDefault(
|
702 |
{
|
@@ -709,9 +723,9 @@ class ValidationTest(unittest.TestCase):
|
|
709 |
|
710 |
with pytest.raises(
|
711 |
ValueError,
|
712 |
-
match=r"
|
713 |
):
|
714 |
-
|
715 |
|
716 |
cfg = DictDefault(
|
717 |
{
|
@@ -722,10 +736,48 @@ class ValidationTest(unittest.TestCase):
|
|
722 |
}
|
723 |
)
|
724 |
|
725 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
726 |
|
727 |
|
728 |
-
class ValidationWandbTest(
|
729 |
"""
|
730 |
Validation test for wandb
|
731 |
"""
|
|
|
10 |
|
11 |
from axolotl.utils.config import validate_config
|
12 |
from axolotl.utils.dict import DictDefault
|
13 |
+
from axolotl.utils.models import check_model_config
|
14 |
from axolotl.utils.wandb_ import setup_wandb_env_vars
|
15 |
|
16 |
|
17 |
+
class BaseValidation(unittest.TestCase):
|
18 |
"""
|
19 |
+
Base validation module to setup the log capture
|
20 |
"""
|
21 |
|
22 |
_caplog: Optional[pytest.LogCaptureFixture] = None
|
|
|
25 |
def inject_fixtures(self, caplog):
|
26 |
self._caplog = caplog
|
27 |
|
28 |
+
|
29 |
+
class ValidationTest(BaseValidation):
|
30 |
+
"""
|
31 |
+
Test the validation module
|
32 |
+
"""
|
33 |
+
|
34 |
def test_load_4bit_deprecate(self):
|
35 |
cfg = DictDefault(
|
36 |
{
|
|
|
694 |
|
695 |
validate_config(cfg)
|
696 |
|
697 |
+
|
698 |
+
class ValidationCheckModelConfig(BaseValidation):
|
699 |
+
"""
|
700 |
+
Test the validation for the config when the model config is available
|
701 |
+
"""
|
702 |
+
|
703 |
+
def test_llama_add_tokens_adapter(self):
|
704 |
cfg = DictDefault(
|
705 |
{"adapter": "qlora", "load_in_4bit": True, "tokens": ["<|imstart|>"]}
|
706 |
)
|
707 |
+
model_config = DictDefault({"model_type": "llama"})
|
708 |
|
709 |
with pytest.raises(
|
710 |
ValueError,
|
711 |
+
match=r".*`lora_modules_to_save` not properly set when adding new tokens*",
|
712 |
):
|
713 |
+
check_model_config(cfg, model_config)
|
714 |
|
715 |
cfg = DictDefault(
|
716 |
{
|
|
|
723 |
|
724 |
with pytest.raises(
|
725 |
ValueError,
|
726 |
+
match=r".*`lora_modules_to_save` not properly set when adding new tokens*",
|
727 |
):
|
728 |
+
check_model_config(cfg, model_config)
|
729 |
|
730 |
cfg = DictDefault(
|
731 |
{
|
|
|
736 |
}
|
737 |
)
|
738 |
|
739 |
+
check_model_config(cfg, model_config)
|
740 |
+
|
741 |
+
def test_phi2_add_tokens_adapter(self):
|
742 |
+
cfg = DictDefault(
|
743 |
+
{"adapter": "qlora", "load_in_4bit": True, "tokens": ["<|imstart|>"]}
|
744 |
+
)
|
745 |
+
model_config = DictDefault({"model_type": "phi-msft"})
|
746 |
+
|
747 |
+
with pytest.raises(
|
748 |
+
ValueError,
|
749 |
+
match=r".*`lora_modules_to_save` not properly set when adding new tokens*",
|
750 |
+
):
|
751 |
+
check_model_config(cfg, model_config)
|
752 |
+
|
753 |
+
cfg = DictDefault(
|
754 |
+
{
|
755 |
+
"adapter": "qlora",
|
756 |
+
"load_in_4bit": True,
|
757 |
+
"tokens": ["<|imstart|>"],
|
758 |
+
"lora_modules_to_save": ["embed_tokens", "lm_head"],
|
759 |
+
}
|
760 |
+
)
|
761 |
+
|
762 |
+
with pytest.raises(
|
763 |
+
ValueError,
|
764 |
+
match=r".*`lora_modules_to_save` not properly set when adding new tokens*",
|
765 |
+
):
|
766 |
+
check_model_config(cfg, model_config)
|
767 |
+
|
768 |
+
cfg = DictDefault(
|
769 |
+
{
|
770 |
+
"adapter": "qlora",
|
771 |
+
"load_in_4bit": True,
|
772 |
+
"tokens": ["<|imstart|>"],
|
773 |
+
"lora_modules_to_save": ["embd", "lm_head.linear"],
|
774 |
+
}
|
775 |
+
)
|
776 |
+
|
777 |
+
check_model_config(cfg, model_config)
|
778 |
|
779 |
|
780 |
+
class ValidationWandbTest(BaseValidation):
|
781 |
"""
|
782 |
Validation test for wandb
|
783 |
"""
|