theobjectivedad commited on
Commit
553a86b
·
1 Parent(s): ef17e15

Adding logging enhancement

Browse files
scripts/alpaca_json_to_jsonl.py CHANGED
@@ -15,6 +15,9 @@ from axolotl.convert import (
15
  JsonToJsonlConverter,
16
  StdoutWriter,
17
  )
 
 
 
18
 
19
  # add src to the pythonpath so we don't need to pip install this
20
  project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
 
15
  JsonToJsonlConverter,
16
  StdoutWriter,
17
  )
18
+ from axolotl.logging_config import configure_logging
19
+
20
+ configure_logging()
21
 
22
  # add src to the pythonpath so we don't need to pip install this
23
  project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
scripts/finetune.py CHANGED
@@ -24,13 +24,16 @@ from axolotl.utils.tokenization import check_dataset_labels
24
  from axolotl.utils.trainer import setup_trainer
25
  from axolotl.utils.validation import validate_config
26
  from axolotl.utils.wandb import setup_wandb_env_vars
 
27
 
28
  project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
29
  src_dir = os.path.join(project_root, "src")
30
  sys.path.insert(0, src_dir)
31
 
 
 
 
32
 
33
- logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
34
  DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
35
 
36
 
@@ -212,7 +215,7 @@ def train(
212
 
213
  # load the tokenizer first
214
  tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
215
- logging.info(f"loading tokenizer... {tokenizer_config}")
216
  tokenizer = load_tokenizer(tokenizer_config, cfg.tokenizer_type, cfg)
217
 
218
  if (
@@ -234,7 +237,7 @@ def train(
234
  eval_dataset = None
235
 
236
  if cfg.debug or "debug" in kwargs:
237
- logging.info("check_dataset_labels...")
238
  check_dataset_labels(
239
  train_dataset.select(
240
  [random.randrange(0, len(train_dataset) - 1) for _ in range(5)] # nosec
@@ -243,11 +246,11 @@ def train(
243
  )
244
 
245
  if prepare_ds_only:
246
- logging.info("Finished preparing dataset. Exiting...")
247
  return
248
 
249
  # Load the model and tokenizer
250
- logging.info("loading model and peft_config...")
251
  model, peft_config = load_model(
252
  cfg.base_model,
253
  cfg.base_model_config,
@@ -258,17 +261,17 @@ def train(
258
  )
259
 
260
  if "merge_lora" in kwargs and cfg.adapter is not None:
261
- logging.info("running merge of LoRA with base model")
262
  model = model.merge_and_unload()
263
  model.to(dtype=torch.float16)
264
 
265
  if cfg.local_rank == 0:
266
- logging.info("saving merged model")
267
  model.save_pretrained(str(Path(cfg.output_dir) / "merged"))
268
  return
269
 
270
  if cfg.inference:
271
- logging.info("calling do_inference function")
272
  prompter: Optional[str] = "AlpacaPrompter"
273
  if "prompter" in kwargs:
274
  if kwargs["prompter"] == "None":
@@ -287,12 +290,12 @@ def train(
287
  model.config.use_cache = False
288
 
289
  if torch.__version__ >= "2" and sys.platform != "win32":
290
- logging.info("Compiling torch model")
291
  model = torch.compile(model)
292
 
293
  # go ahead and presave, so we have the adapter config available to inspect
294
  if peft_config:
295
- logging.info(f"Pre-saving adapter config to {cfg.output_dir}")
296
  peft_config.save_pretrained(cfg.output_dir)
297
 
298
  # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
@@ -308,9 +311,9 @@ def train(
308
  signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model)
309
  )
310
 
311
- logging.info("Starting trainer...")
312
  if cfg.group_by_length:
313
- logging.info("hang tight... sorting dataset for group_by_length")
314
  resume_from_checkpoint = cfg.resume_from_checkpoint
315
  if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints:
316
  possible_checkpoints = [
@@ -322,7 +325,7 @@ def train(
322
  key=lambda path: int(path.split("-")[-1]),
323
  )
324
  resume_from_checkpoint = sorted_paths[-1]
325
- logging.info(
326
  f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}"
327
  )
328
 
@@ -336,7 +339,7 @@ def train(
336
  else:
337
  trainer.train(resume_from_checkpoint=resume_from_checkpoint)
338
 
339
- logging.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
340
 
341
  # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
342
  # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file
 
24
  from axolotl.utils.trainer import setup_trainer
25
  from axolotl.utils.validation import validate_config
26
  from axolotl.utils.wandb import setup_wandb_env_vars
27
+ from axolotl.logging_config import configure_logging
28
 
29
  project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
30
  src_dir = os.path.join(project_root, "src")
31
  sys.path.insert(0, src_dir)
32
 
33
+ configure_logging()
34
+ LOG = logging.getLogger("axolotl.scripts")
35
+
36
 
 
37
  DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
38
 
39
 
 
215
 
216
  # load the tokenizer first
217
  tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
218
+ LOG.info(f"loading tokenizer... {tokenizer_config}")
219
  tokenizer = load_tokenizer(tokenizer_config, cfg.tokenizer_type, cfg)
220
 
221
  if (
 
237
  eval_dataset = None
238
 
239
  if cfg.debug or "debug" in kwargs:
240
+ LOG.info("check_dataset_labels...")
241
  check_dataset_labels(
242
  train_dataset.select(
243
  [random.randrange(0, len(train_dataset) - 1) for _ in range(5)] # nosec
 
246
  )
247
 
248
  if prepare_ds_only:
249
+ LOG.info("Finished preparing dataset. Exiting...")
250
  return
251
 
252
  # Load the model and tokenizer
253
+ LOG.info("loading model and peft_config...")
254
  model, peft_config = load_model(
255
  cfg.base_model,
256
  cfg.base_model_config,
 
261
  )
262
 
263
  if "merge_lora" in kwargs and cfg.adapter is not None:
264
+ LOG.info("running merge of LoRA with base model")
265
  model = model.merge_and_unload()
266
  model.to(dtype=torch.float16)
267
 
268
  if cfg.local_rank == 0:
269
+ LOG.info("saving merged model")
270
  model.save_pretrained(str(Path(cfg.output_dir) / "merged"))
271
  return
272
 
273
  if cfg.inference:
274
+ LOG.info("calling do_inference function")
275
  prompter: Optional[str] = "AlpacaPrompter"
276
  if "prompter" in kwargs:
277
  if kwargs["prompter"] == "None":
 
290
  model.config.use_cache = False
291
 
292
  if torch.__version__ >= "2" and sys.platform != "win32":
293
+ LOG.info("Compiling torch model")
294
  model = torch.compile(model)
295
 
296
  # go ahead and presave, so we have the adapter config available to inspect
297
  if peft_config:
298
+ LOG.info(f"Pre-saving adapter config to {cfg.output_dir}")
299
  peft_config.save_pretrained(cfg.output_dir)
300
 
301
  # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model
 
311
  signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model)
312
  )
313
 
314
+ LOG.info("Starting trainer...")
315
  if cfg.group_by_length:
316
+ LOG.info("hang tight... sorting dataset for group_by_length")
317
  resume_from_checkpoint = cfg.resume_from_checkpoint
318
  if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints:
319
  possible_checkpoints = [
 
325
  key=lambda path: int(path.split("-")[-1]),
326
  )
327
  resume_from_checkpoint = sorted_paths[-1]
328
+ LOG.info(
329
  f"Using Auto-resume functionality to start with checkpoint at {resume_from_checkpoint}"
330
  )
331
 
 
339
  else:
340
  trainer.train(resume_from_checkpoint=resume_from_checkpoint)
341
 
342
+ LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}")
343
 
344
  # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading
345
  # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file
src/axolotl/datasets.py CHANGED
@@ -14,6 +14,7 @@ from .prompt_tokenizers import InvalidDataException, PromptTokenizingStrategy
14
  # let's check to ensure we don't truncate an item in the middle, we'll use
15
  # the collators later on to pad the datasets
16
 
 
17
 
18
  class TokenizedPromptDataset(IterableDataset):
19
  """
@@ -115,7 +116,7 @@ class ConstantLengthDataset(IterableDataset):
115
  "attention_mask": attention_mask,
116
  }
117
  else:
118
- logging.warning(
119
  f"dropping batch due to tensor size mismatch input_ids: {input_ids.size()}, labels: {labels.size()}, attention_mask: {attention_mask.size()}"
120
  )
121
  buffer = {
 
14
  # let's check to ensure we don't truncate an item in the middle, we'll use
15
  # the collators later on to pad the datasets
16
 
17
+ LOG = logging.getLogger("axolotl")
18
 
19
  class TokenizedPromptDataset(IterableDataset):
20
  """
 
116
  "attention_mask": attention_mask,
117
  }
118
  else:
119
+ LOG.warning(
120
  f"dropping batch due to tensor size mismatch input_ids: {input_ids.size()}, labels: {labels.size()}, attention_mask: {attention_mask.size()}"
121
  )
122
  buffer = {
src/axolotl/logging_config.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ from logging.config import dictConfig
3
+ from typing import Any, Dict
4
+
5
+ DEFAULT_LOGGING_CONFIG: Dict[str, Any] = {
6
+ "version": 1,
7
+ "formatters": {
8
+ "simple": {
9
+ "format": "[%(asctime)s] [%(levelname)s] [PID:%(process)d] [%(name)s.%(funcName)s:%(lineno)d] %(message)s",
10
+ },
11
+ },
12
+ "filters": {},
13
+ "handlers": {
14
+ "console": {
15
+ "class": "logging.StreamHandler",
16
+ "formatter": "simple",
17
+ "filters": [],
18
+ "stream": sys.stdout,
19
+ },
20
+ },
21
+ "root": {"handlers": ["console"], "level": "INFO"},
22
+ }
23
+
24
+
25
+ def configure_logging():
26
+ """Configure with default logging"""
27
+ dictConfig(DEFAULT_LOGGING_CONFIG)
src/axolotl/monkeypatch/llama_landmark_attn.py CHANGED
@@ -52,8 +52,7 @@ from transformers.utils import (
52
  logging,
53
  replace_return_docstrings,
54
  )
55
-
56
- logger = logging.get_logger(__name__)
57
 
58
  _CONFIG_FOR_DOC = "LlamaConfig"
59
 
 
52
  logging,
53
  replace_return_docstrings,
54
  )
55
+ LOG = logging.getLogger("axolotl")
 
56
 
57
  _CONFIG_FOR_DOC = "LlamaConfig"
58
 
src/axolotl/prompt_strategies/pygmalion.py CHANGED
@@ -64,7 +64,7 @@ class PygmalionPromptTokenizingStrategy(PromptTokenizingStrategy):
64
  *copy.deepcopy(res["input_ids"])
65
  ][len(self.bot_prefix_token_ids) :]
66
  else:
67
- logging.warning(f"unknown role in conversation: {role}")
68
  res = defaultdict(lambda: [])
69
 
70
  # pylint: disable=duplicate-code
 
64
  *copy.deepcopy(res["input_ids"])
65
  ][len(self.bot_prefix_token_ids) :]
66
  else:
67
+ LOG.warning(f"unknown role in conversation: {role}")
68
  res = defaultdict(lambda: [])
69
 
70
  # pylint: disable=duplicate-code
src/axolotl/prompt_tokenizers.py CHANGED
@@ -10,6 +10,8 @@ from transformers import PreTrainedTokenizer
10
 
11
  from axolotl.prompters import IGNORE_TOKEN_ID
12
 
 
 
13
  IGNORE_INDEX = -100
14
  LLAMA_DEFAULT_PAD_TOKEN = "[PAD]" # nosec
15
  LLAMA_DEFAULT_EOS_TOKEN = "</s>" # nosec
@@ -384,7 +386,7 @@ class ShareGPTPromptTokenizingStrategy(PromptTokenizingStrategy):
384
  # everything from this is masked out from the labels
385
  labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
386
  else:
387
- logging.warning(f"unhandled role: {part[0]}")
388
 
389
  # pylint: disable=duplicate-code
390
  result, current_len = parse_tokenized_to_result(
 
10
 
11
  from axolotl.prompters import IGNORE_TOKEN_ID
12
 
13
+ LOG = logging.getLogger("axolotl")
14
+
15
  IGNORE_INDEX = -100
16
  LLAMA_DEFAULT_PAD_TOKEN = "[PAD]" # nosec
17
  LLAMA_DEFAULT_EOS_TOKEN = "</s>" # nosec
 
386
  # everything from this is masked out from the labels
387
  labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
388
  else:
389
+ LOG.warning(f"unhandled role: {part[0]}")
390
 
391
  # pylint: disable=duplicate-code
392
  result, current_len = parse_tokenized_to_result(
src/axolotl/prompters.py CHANGED
@@ -241,7 +241,7 @@ class Conversation:
241
  if message:
242
  yield (role + ":", " " + message)
243
  else:
244
- logging.warning(f"role with empty message: {role}")
245
  yield (role + ":", "")
246
 
247
  def copy(self):
 
241
  if message:
242
  yield (role + ":", " " + message)
243
  else:
244
+ LOG.warning(f"role with empty message: {role}")
245
  yield (role + ":", "")
246
 
247
  def copy(self):
src/axolotl/utils/data.py CHANGED
@@ -35,6 +35,8 @@ from axolotl.prompters import (
35
  SummarizeTLDRPrompter,
36
  )
37
 
 
 
38
 
39
  def load_tokenized_prepared_datasets(
40
  tokenizer, cfg, default_dataset_prepared_path
@@ -73,17 +75,17 @@ def load_tokenized_prepared_datasets(
73
  if dataset:
74
  ...
75
  elif any(prepared_ds_path.glob("*")):
76
- logging.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
77
  dataset = load_from_disk(str(prepared_ds_path))
78
- logging.info("Prepared dataset loaded from disk...")
79
  else:
80
- logging.info(f"Unable to find prepared dataset in {prepared_ds_path}")
81
- logging.info("Loading raw datasets...")
82
 
83
  if cfg.seed:
84
  seed = cfg.seed
85
  else:
86
- logging.info("No seed provided, using default seed of 42")
87
  seed = 42
88
 
89
  datasets = []
@@ -256,25 +258,25 @@ def load_tokenized_prepared_datasets(
256
  suffix = ""
257
  if ":load_" in d.type:
258
  suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?"
259
- logging.error(
260
  f"unhandled prompt tokenization strategy: {d.type}. {suffix}"
261
  )
262
  raise ValueError(
263
  f"unhandled prompt tokenization strategy: {d.type} {suffix}"
264
  )
265
- logging.info("tokenizing, merging, and shuffling master dataset")
266
 
267
  samples: List[int] = []
268
  for d in datasets:
269
  samples = samples + list(d)
270
  dataset = Dataset.from_list(samples).shuffle(seed=seed)
271
  if cfg.local_rank == 0:
272
- logging.info(
273
  f"Saving merged prepared dataset to disk... {prepared_ds_path}"
274
  )
275
  dataset.save_to_disk(prepared_ds_path)
276
  if cfg.push_dataset_to_hub:
277
- logging.info(
278
  f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
279
  )
280
  dataset.push_to_hub(
@@ -325,7 +327,7 @@ def load_prepare_datasets(
325
  use_auth_token = cfg.hf_use_auth_token
326
  try:
327
  if cfg.push_dataset_to_hub:
328
- logging.info(
329
  f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
330
  )
331
  dataset = load_dataset(
@@ -339,13 +341,13 @@ def load_prepare_datasets(
339
  if dataset:
340
  ...
341
  elif any(prepared_ds_path.glob("*")):
342
- logging.info(
343
  f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
344
  )
345
  dataset = load_from_disk(str(prepared_ds_path))
346
- logging.info("Prepared packed dataset loaded from disk...")
347
  if cfg.push_dataset_to_hub:
348
- logging.info(
349
  f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
350
  )
351
  dataset.push_to_hub(
@@ -364,7 +366,7 @@ def load_prepare_datasets(
364
  [dataset],
365
  seq_length=max_packed_sequence_len,
366
  )
367
- logging.info(
368
  f"packing master dataset to len: {cfg.max_packed_sequence_len}"
369
  )
370
  dataset = Dataset.from_list(list(constant_len_dataset))
@@ -382,12 +384,12 @@ def load_prepare_datasets(
382
  )
383
 
384
  if cfg.local_rank == 0:
385
- logging.info(
386
  f"Saving packed prepared dataset to disk... {prepared_ds_path}"
387
  )
388
  dataset.save_to_disk(prepared_ds_path)
389
  if cfg.push_dataset_to_hub:
390
- logging.info(
391
  f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
392
  )
393
  dataset.push_to_hub(
@@ -400,7 +402,7 @@ def load_prepare_datasets(
400
  )
401
 
402
  if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
403
- logging.info(
404
  f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
405
  )
406
  dataset = dataset.shard(
@@ -521,7 +523,7 @@ def encode_pretraining(tokenizer, max_tokens, examples):
521
  "attention_mask": [seq.tolist() for seq in new_attention_mask],
522
  }
523
 
524
- logging.debug(len(ret["input_ids"]))
525
  return ret
526
 
527
 
 
35
  SummarizeTLDRPrompter,
36
  )
37
 
38
+ LOG = logging.getLogger("axolotl")
39
+
40
 
41
  def load_tokenized_prepared_datasets(
42
  tokenizer, cfg, default_dataset_prepared_path
 
75
  if dataset:
76
  ...
77
  elif any(prepared_ds_path.glob("*")):
78
+ LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
79
  dataset = load_from_disk(str(prepared_ds_path))
80
+ LOG.info("Prepared dataset loaded from disk...")
81
  else:
82
+ LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
83
+ LOG.info("Loading raw datasets...")
84
 
85
  if cfg.seed:
86
  seed = cfg.seed
87
  else:
88
+ LOG.info("No seed provided, using default seed of 42")
89
  seed = 42
90
 
91
  datasets = []
 
258
  suffix = ""
259
  if ":load_" in d.type:
260
  suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?"
261
+ LOG.error(
262
  f"unhandled prompt tokenization strategy: {d.type}. {suffix}"
263
  )
264
  raise ValueError(
265
  f"unhandled prompt tokenization strategy: {d.type} {suffix}"
266
  )
267
+ LOG.info("tokenizing, merging, and shuffling master dataset")
268
 
269
  samples: List[int] = []
270
  for d in datasets:
271
  samples = samples + list(d)
272
  dataset = Dataset.from_list(samples).shuffle(seed=seed)
273
  if cfg.local_rank == 0:
274
+ LOG.info(
275
  f"Saving merged prepared dataset to disk... {prepared_ds_path}"
276
  )
277
  dataset.save_to_disk(prepared_ds_path)
278
  if cfg.push_dataset_to_hub:
279
+ LOG.info(
280
  f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
281
  )
282
  dataset.push_to_hub(
 
327
  use_auth_token = cfg.hf_use_auth_token
328
  try:
329
  if cfg.push_dataset_to_hub:
330
+ LOG.info(
331
  f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
332
  )
333
  dataset = load_dataset(
 
341
  if dataset:
342
  ...
343
  elif any(prepared_ds_path.glob("*")):
344
+ LOG.info(
345
  f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
346
  )
347
  dataset = load_from_disk(str(prepared_ds_path))
348
+ LOG.info("Prepared packed dataset loaded from disk...")
349
  if cfg.push_dataset_to_hub:
350
+ LOG.info(
351
  f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
352
  )
353
  dataset.push_to_hub(
 
366
  [dataset],
367
  seq_length=max_packed_sequence_len,
368
  )
369
+ LOG.info(
370
  f"packing master dataset to len: {cfg.max_packed_sequence_len}"
371
  )
372
  dataset = Dataset.from_list(list(constant_len_dataset))
 
384
  )
385
 
386
  if cfg.local_rank == 0:
387
+ LOG.info(
388
  f"Saving packed prepared dataset to disk... {prepared_ds_path}"
389
  )
390
  dataset.save_to_disk(prepared_ds_path)
391
  if cfg.push_dataset_to_hub:
392
+ LOG.info(
393
  f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
394
  )
395
  dataset.push_to_hub(
 
402
  )
403
 
404
  if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
405
+ LOG.info(
406
  f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
407
  )
408
  dataset = dataset.shard(
 
523
  "attention_mask": [seq.tolist() for seq in new_attention_mask],
524
  }
525
 
526
+ LOG.debug(len(ret["input_ids"]))
527
  return ret
528
 
529
 
src/axolotl/utils/models.py CHANGED
@@ -23,6 +23,8 @@ from transformers import ( # noqa: F401
23
 
24
  from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
25
 
 
 
26
  if TYPE_CHECKING:
27
  from peft import PeftConfig # noqa: F401
28
 
@@ -50,10 +52,10 @@ def load_tokenizer(
50
  use_fast=use_fast,
51
  )
52
 
53
- logging.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
54
- logging.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
55
- logging.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
56
- logging.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
57
 
58
  if tokenizer.__class__.__name__ in [
59
  "LlamaTokenizer",
@@ -92,21 +94,21 @@ def load_model(
92
  if cfg.device not in ["mps", "cpu"] and not cfg.inference:
93
  from axolotl.flash_attn import replace_llama_attn_with_flash_attn
94
 
95
- logging.info("patching with flash attention")
96
  replace_llama_attn_with_flash_attn()
97
  elif cfg.is_llama_derived_model and cfg.xformers_attention:
98
  from axolotl.monkeypatch.llama_attn_hijack_xformers import (
99
  hijack_llama_attention,
100
  )
101
 
102
- logging.info("patching with xformers attention")
103
  hijack_llama_attention()
104
  elif cfg.is_llama_derived_model and cfg.sdp_attention:
105
  from axolotl.monkeypatch.llama_attn_hijack_xformers import (
106
  hijack_llama_sdp_attention,
107
  )
108
 
109
- logging.info("patching with sdp attention")
110
  hijack_llama_sdp_attention()
111
  elif cfg.is_llama_derived_model and cfg.landmark_attention:
112
  from axolotl.monkeypatch.llama_landmark_attn import (
@@ -114,7 +116,7 @@ def load_model(
114
  patch_llama_with_landmark_attn,
115
  )
116
 
117
- logging.info("patching with landmark attention")
118
  patch_llama_with_landmark_attn()
119
 
120
  # Note: This might overwrite previous additional_special_tokens
@@ -125,7 +127,7 @@ def load_model(
125
  replace_llama_rope_with_xpos_rope,
126
  )
127
 
128
- logging.info("patching with xpos rope")
129
  replace_llama_rope_with_xpos_rope()
130
 
131
  if cfg.bf16 or cfg.bfloat16:
@@ -142,7 +144,7 @@ def load_model(
142
 
143
  replace_peft_model_with_int4_lora_model()
144
  except Exception as err:
145
- logging.exception(err)
146
  raise err
147
 
148
  try:
@@ -187,7 +189,7 @@ def load_model(
187
  if len(files) > 0:
188
  model_path = str(files[0])
189
  else:
190
- logging.warning(
191
  "unable to find a cached model file, this will likely fail..."
192
  )
193
  model_path = str(cache_model_path)
@@ -266,14 +268,14 @@ def load_model(
266
  and cfg.sequence_len > config.max_seq_len
267
  ):
268
  config.max_seq_len = cfg.sequence_len
269
- logging.warning(f"increasing context length to {cfg.sequence_len}")
270
  elif (
271
  hasattr(config, "max_sequence_length")
272
  and config.max_sequence_length
273
  and cfg.sequence_len > config.max_sequence_length
274
  ):
275
  config.max_sequence_length = cfg.sequence_len
276
- logging.warning(f"increasing context length to {cfg.sequence_len}")
277
  model = AutoModelForCausalLM.from_pretrained(
278
  base_model,
279
  config=config,
@@ -285,10 +287,10 @@ def load_model(
285
  **model_kwargs,
286
  )
287
  except Exception as err: # pylint: disable=broad-exception-caught
288
- logging.error(
289
  "Exception raised attempting to load model, retrying with AutoModelForCausalLM"
290
  )
291
- logging.exception(err)
292
  model = AutoModelForCausalLM.from_pretrained(
293
  base_model,
294
  load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
@@ -307,7 +309,7 @@ def load_model(
307
  and model.config.max_position_embeddings
308
  and cfg.sequence_len >= model.config.max_position_embeddings
309
  ):
310
- logging.warning(
311
  f"increasing model.config.max_position_embeddings to {cfg.sequence_len}"
312
  )
313
  model.config.max_position_embeddings = cfg.sequence_len
@@ -316,7 +318,7 @@ def load_model(
316
  (cfg.adapter == "lora" and load_in_8bit)
317
  or (cfg.adapter == "qlora" and cfg.load_in_4bit)
318
  ):
319
- logging.info("converting PEFT model w/ prepare_model_for_kbit_training")
320
  model = prepare_model_for_kbit_training(
321
  model, use_gradient_checkpointing=cfg.gradient_checkpointing
322
  )
@@ -328,7 +330,7 @@ def load_model(
328
 
329
  if cfg.gptq:
330
  # Scales to half
331
- logging.info("Fitting 4bit scales and zeros to half")
332
  for _, module in model.named_modules():
333
  if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str(
334
  type(module)
@@ -354,7 +356,7 @@ def load_model(
354
  if param.requires_grad:
355
  requires_grad.append(f"{name}: {param.requires_grad}")
356
  if len(requires_grad) == 0:
357
- logging.warning("there are no parameters that require gradient updates")
358
  model.config.use_cache = False
359
 
360
  if cfg.flash_optimum:
@@ -388,7 +390,7 @@ def load_llama_adapter(model, cfg):
388
  )
389
 
390
  if cfg.lora_model_dir:
391
- logging.info("Loading pretained LORA")
392
  model = PeftModel.from_pretrained(
393
  model,
394
  cfg.lora_model_dir,
@@ -435,7 +437,7 @@ def load_lora(model, cfg):
435
  bits = 8
436
 
437
  linear_names = find_all_linear_names(bits, model)
438
- logging.info(f"found linear modules: {repr(linear_names)}")
439
  lora_target_modules = list(set(lora_target_modules + linear_names))
440
 
441
  lora_config = LoraConfig(
 
23
 
24
  from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
25
 
26
+ LOG = logging.getLogger("axolotl")
27
+
28
  if TYPE_CHECKING:
29
  from peft import PeftConfig # noqa: F401
30
 
 
52
  use_fast=use_fast,
53
  )
54
 
55
+ LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
56
+ LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
57
+ LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
58
+ LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
59
 
60
  if tokenizer.__class__.__name__ in [
61
  "LlamaTokenizer",
 
94
  if cfg.device not in ["mps", "cpu"] and not cfg.inference:
95
  from axolotl.flash_attn import replace_llama_attn_with_flash_attn
96
 
97
+ LOG.info("patching with flash attention")
98
  replace_llama_attn_with_flash_attn()
99
  elif cfg.is_llama_derived_model and cfg.xformers_attention:
100
  from axolotl.monkeypatch.llama_attn_hijack_xformers import (
101
  hijack_llama_attention,
102
  )
103
 
104
+ LOG.info("patching with xformers attention")
105
  hijack_llama_attention()
106
  elif cfg.is_llama_derived_model and cfg.sdp_attention:
107
  from axolotl.monkeypatch.llama_attn_hijack_xformers import (
108
  hijack_llama_sdp_attention,
109
  )
110
 
111
+ LOG.info("patching with sdp attention")
112
  hijack_llama_sdp_attention()
113
  elif cfg.is_llama_derived_model and cfg.landmark_attention:
114
  from axolotl.monkeypatch.llama_landmark_attn import (
 
116
  patch_llama_with_landmark_attn,
117
  )
118
 
119
+ LOG.info("patching with landmark attention")
120
  patch_llama_with_landmark_attn()
121
 
122
  # Note: This might overwrite previous additional_special_tokens
 
127
  replace_llama_rope_with_xpos_rope,
128
  )
129
 
130
+ LOG.info("patching with xpos rope")
131
  replace_llama_rope_with_xpos_rope()
132
 
133
  if cfg.bf16 or cfg.bfloat16:
 
144
 
145
  replace_peft_model_with_int4_lora_model()
146
  except Exception as err:
147
+ LOG.exception(err)
148
  raise err
149
 
150
  try:
 
189
  if len(files) > 0:
190
  model_path = str(files[0])
191
  else:
192
+ LOG.warning(
193
  "unable to find a cached model file, this will likely fail..."
194
  )
195
  model_path = str(cache_model_path)
 
268
  and cfg.sequence_len > config.max_seq_len
269
  ):
270
  config.max_seq_len = cfg.sequence_len
271
+ LOG.warning(f"increasing context length to {cfg.sequence_len}")
272
  elif (
273
  hasattr(config, "max_sequence_length")
274
  and config.max_sequence_length
275
  and cfg.sequence_len > config.max_sequence_length
276
  ):
277
  config.max_sequence_length = cfg.sequence_len
278
+ LOG.warning(f"increasing context length to {cfg.sequence_len}")
279
  model = AutoModelForCausalLM.from_pretrained(
280
  base_model,
281
  config=config,
 
287
  **model_kwargs,
288
  )
289
  except Exception as err: # pylint: disable=broad-exception-caught
290
+ LOG.error(
291
  "Exception raised attempting to load model, retrying with AutoModelForCausalLM"
292
  )
293
+ LOG.exception(err)
294
  model = AutoModelForCausalLM.from_pretrained(
295
  base_model,
296
  load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
 
309
  and model.config.max_position_embeddings
310
  and cfg.sequence_len >= model.config.max_position_embeddings
311
  ):
312
+ LOG.warning(
313
  f"increasing model.config.max_position_embeddings to {cfg.sequence_len}"
314
  )
315
  model.config.max_position_embeddings = cfg.sequence_len
 
318
  (cfg.adapter == "lora" and load_in_8bit)
319
  or (cfg.adapter == "qlora" and cfg.load_in_4bit)
320
  ):
321
+ LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
322
  model = prepare_model_for_kbit_training(
323
  model, use_gradient_checkpointing=cfg.gradient_checkpointing
324
  )
 
330
 
331
  if cfg.gptq:
332
  # Scales to half
333
+ LOG.info("Fitting 4bit scales and zeros to half")
334
  for _, module in model.named_modules():
335
  if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str(
336
  type(module)
 
356
  if param.requires_grad:
357
  requires_grad.append(f"{name}: {param.requires_grad}")
358
  if len(requires_grad) == 0:
359
+ LOG.warning("there are no parameters that require gradient updates")
360
  model.config.use_cache = False
361
 
362
  if cfg.flash_optimum:
 
390
  )
391
 
392
  if cfg.lora_model_dir:
393
+ LOG.info("Loading pretained LORA")
394
  model = PeftModel.from_pretrained(
395
  model,
396
  cfg.lora_model_dir,
 
437
  bits = 8
438
 
439
  linear_names = find_all_linear_names(bits, model)
440
+ LOG.info(f"found linear modules: {repr(linear_names)}")
441
  lora_target_modules = list(set(lora_target_modules + linear_names))
442
 
443
  lora_config = LoraConfig(
src/axolotl/utils/tokenization.py CHANGED
@@ -5,6 +5,8 @@ import logging
5
 
6
  from termcolor import colored
7
 
 
 
8
 
9
  def check_dataset_labels(dataset, tokenizer):
10
  # the dataset is already shuffled, so let's just check the first 5 elements
@@ -32,7 +34,7 @@ def check_example_labels(example, tokenizer):
32
  )
33
  colored_tokens.append(colored_token)
34
 
35
- logging.info(" ".join(colored_tokens))
36
- logging.info("\n\n\n")
37
 
38
  return " ".join(colored_tokens)
 
5
 
6
  from termcolor import colored
7
 
8
+ LOG = logging.getLogger("axolotl")
9
+
10
 
11
  def check_dataset_labels(dataset, tokenizer):
12
  # the dataset is already shuffled, so let's just check the first 5 elements
 
34
  )
35
  colored_tokens.append(colored_token)
36
 
37
+ LOG.info(" ".join(colored_tokens))
38
+ LOG.info("\n\n\n")
39
 
40
  return " ".join(colored_tokens)
src/axolotl/utils/trainer.py CHANGED
@@ -26,6 +26,8 @@ from axolotl.utils.schedulers import (
26
  get_cosine_schedule_with_quadratic_warmup,
27
  )
28
 
 
 
29
 
30
  class AxolotlTrainingArguments(TrainingArguments):
31
  """
@@ -320,7 +322,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
320
 
321
  set_model_mem_id(model, tokenizer)
322
 
323
- logging.info("Adding landmark attention tokens to dataset")
324
 
325
  for dataset in [train_dataset, eval_dataset]:
326
  dataset = dataset.map(
 
26
  get_cosine_schedule_with_quadratic_warmup,
27
  )
28
 
29
+ LOG = logging.getLogger("axolotl")
30
+
31
 
32
  class AxolotlTrainingArguments(TrainingArguments):
33
  """
 
322
 
323
  set_model_mem_id(model, tokenizer)
324
 
325
+ LOG.info("Adding landmark attention tokens to dataset")
326
 
327
  for dataset in [train_dataset, eval_dataset]:
328
  dataset = dataset.map(
src/axolotl/utils/validation.py CHANGED
@@ -4,6 +4,8 @@ import logging
4
 
5
  import torch
6
 
 
 
7
 
8
  def validate_config(cfg):
9
  if cfg.gradient_accumulation_steps and cfg.batch_size:
@@ -11,7 +13,7 @@ def validate_config(cfg):
11
  "please set only one of gradient_accumulation_steps or batch_size"
12
  )
13
  if cfg.batch_size:
14
- logging.warning(
15
  "%s\n%s",
16
  "batch_size is not recommended. Please use gradient_accumulation_steps instead.",
17
  "To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
@@ -44,10 +46,10 @@ def validate_config(cfg):
44
  raise ValueError("Require cfg.load_in_4bit to be True for qlora")
45
 
46
  if not cfg.load_in_8bit and cfg.adapter == "lora":
47
- logging.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
48
 
49
  if cfg.trust_remote_code:
50
- logging.warning(
51
  "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
52
  )
53
 
@@ -66,31 +68,29 @@ def validate_config(cfg):
66
 
67
  if cfg.flash_optimum is True:
68
  if cfg.adapter:
69
- logging.warning(
70
- "BetterTransformers probably doesn't work with PEFT adapters"
71
- )
72
  if cfg.fp16 or cfg.bf16:
73
  raise ValueError("AMP is not supported with BetterTransformer")
74
  if cfg.float16 is not True and cfg.bloat16 is not True:
75
- logging.warning(
76
  "You should probably set bfloat16 or float16 to true to "
77
  "load the model in float16 for BetterTransformers"
78
  )
79
  if int(torch.__version__.split(".")[0]) < 2:
80
- logging.warning("torch>=2.0.0 required")
81
  raise ValueError(
82
  f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
83
  )
84
 
85
  if cfg.pretraining_dataset and cfg.group_by_length:
86
- logging.warning(
87
  "You probably want to disable group_by_length as it will force a streamed dataset to download completely."
88
  )
89
 
90
  if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
91
  not cfg.optimizer or "adamw" not in cfg.optimizer
92
  ):
93
- logging.warning("adamw hyperparameters found, but no adamw optimizer set")
94
 
95
  if cfg.push_to_hub_model_id:
96
  raise ValueError(
 
4
 
5
  import torch
6
 
7
+ LOG = logging.getLogger("axolotl")
8
+
9
 
10
  def validate_config(cfg):
11
  if cfg.gradient_accumulation_steps and cfg.batch_size:
 
13
  "please set only one of gradient_accumulation_steps or batch_size"
14
  )
15
  if cfg.batch_size:
16
+ LOG.warning(
17
  "%s\n%s",
18
  "batch_size is not recommended. Please use gradient_accumulation_steps instead.",
19
  "To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
 
46
  raise ValueError("Require cfg.load_in_4bit to be True for qlora")
47
 
48
  if not cfg.load_in_8bit and cfg.adapter == "lora":
49
+ LOG.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
50
 
51
  if cfg.trust_remote_code:
52
+ LOG.warning(
53
  "`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
54
  )
55
 
 
68
 
69
  if cfg.flash_optimum is True:
70
  if cfg.adapter:
71
+ LOG.warning("BetterTransformers probably doesn't work with PEFT adapters")
 
 
72
  if cfg.fp16 or cfg.bf16:
73
  raise ValueError("AMP is not supported with BetterTransformer")
74
  if cfg.float16 is not True and cfg.bloat16 is not True:
75
+ LOG.warning(
76
  "You should probably set bfloat16 or float16 to true to "
77
  "load the model in float16 for BetterTransformers"
78
  )
79
  if int(torch.__version__.split(".")[0]) < 2:
80
+ LOG.warning("torch>=2.0.0 required")
81
  raise ValueError(
82
  f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
83
  )
84
 
85
  if cfg.pretraining_dataset and cfg.group_by_length:
86
+ LOG.warning(
87
  "You probably want to disable group_by_length as it will force a streamed dataset to download completely."
88
  )
89
 
90
  if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
91
  not cfg.optimizer or "adamw" not in cfg.optimizer
92
  ):
93
+ LOG.warning("adamw hyperparameters found, but no adamw optimizer set")
94
 
95
  if cfg.push_to_hub_model_id:
96
  raise ValueError(
tests/test_prompt_tokenizers.py CHANGED
@@ -16,8 +16,11 @@ from axolotl.prompt_tokenizers import (
16
  ShareGPTPromptTokenizingStrategy,
17
  )
18
  from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompter
 
19
 
20
- logging.basicConfig(level="INFO")
 
 
21
 
22
 
23
  class TestPromptTokenizationStrategies(unittest.TestCase):
 
16
  ShareGPTPromptTokenizingStrategy,
17
  )
18
  from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompter
19
+ from axolotl.logging_config import configure_logging
20
 
21
+ configure_logging()
22
+
23
+ LOG = logging.getLogger("axolotl")
24
 
25
 
26
  class TestPromptTokenizationStrategies(unittest.TestCase):