File size: 19,332 Bytes
f4e5d86 6045345 bdbca8f 6045345 37293dc 6045345 ffd1043 6045345 1edc30c 88e17ff 39a208c 88e17ff 39a208c 2bc1a5b 6045345 e303d64 6045345 553a86b 6045345 f4e5d86 6045345 37293dc 6045345 efb3b2c 2bb0b78 47d601f efb3b2c 47d601f 2bb0b78 efb3b2c 32e6fe9 37293dc 32e6fe9 e029ab3 32e6fe9 f4e5d86 32e6fe9 6045345 7181022 f4e5d86 7181022 f4e5d86 7181022 6045345 2bb0b78 2bc1a5b 6045345 55b8542 a808bf9 312a9fa 6045345 553a86b 06edf17 55b8542 6cb2310 2bc1a5b 553a86b 8746b70 55b8542 06edf17 6cb2310 553a86b 6cb2310 55b8542 919727b 55b8542 919727b 55b8542 553a86b 919727b 55b8542 919727b e44c9e0 6045345 a03a7d7 553a86b a03a7d7 1687be6 2bb0b78 1210dc8 aef00b6 1edc30c aef00b6 6045345 dd00657 6045345 f4e5d86 553a86b f4e5d86 6045345 db2a358 aefb2fc 3b4d055 69a2350 1987e5c 3b4d055 e65aeed 3b4d055 6045345 55b8542 6045345 d653859 2bc1a5b d653859 6045345 d653859 553a86b d653859 f4e5d86 d653859 32e6fe9 6045345 641f801 6045345 66afb76 563b6d8 919727b 919246f b521206 919246f b521206 9190ada 2520ecd 094fc2c 9190ada e8aacfb 9190ada 3b4d055 9190ada 1d5ab84 56f9ca5 1d5ab84 56f9ca5 1d5ab84 d69da99 6045345 094fc2c 6dfdd2d e8aacfb 6045345 f4e5d86 3b4d055 6045345 94f5e41 e2e68c3 f4e5d86 e2e68c3 4ac9e25 136522f 4ac9e25 553a86b 7f09106 136522f 7f09106 553a86b 94f5e41 e2e68c3 094fc2c 6dfdd2d e8aacfb 94f5e41 f4e5d86 3b4d055 94f5e41 f4e5d86 553a86b 6045345 553a86b 6045345 094fc2c 6dfdd2d 88e17ff 6045345 f4e5d86 3b4d055 6045345 1066751 bdbca8f aa3c3f9 c9a149f 136522f c9a149f 553a86b ab5cd28 e303d64 f4e5d86 7b5e762 553a86b fe0b768 6045345 2eda9e0 78b9efb 248bf90 78b9efb 248bf90 0c96727 6045345 94f5e41 6045345 dd00657 6045345 553a86b f4e5d86 6045345 f4e5d86 6045345 ce34d64 e65aeed ce34d64 42410c7 cfcc549 ad2b48c 247825b 553a86b bdbca8f ad2b48c 1edc30c 7b55fe6 6045345 32e6fe9 6045345 8bd7a49 6045345 176b888 7b5e762 6045345 2255bb7 6045345 2255bb7 8bd7a49 37293dc 2255bb7 1d5ab84 553a86b 2255bb7 ffd1043 6045345 8bd7a49 6045345 37293dc 6045345 4c90633 9196237 553a86b 9196237 6045345 2255bb7 ffd1043 2255bb7 2c73c81 2255bb7 6045345 2255bb7 813cfa4 2255bb7 6045345 2255bb7 6045345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
"""Module for models and model loading"""
import logging
import math
import os
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401
import bitsandbytes as bnb
import torch
import transformers
from optimum.bettertransformer import BetterTransformer
from transformers import ( # noqa: F401
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
LlamaConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
)
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
from axolotl.utils.bench import log_gpu_memory_usage
LOG = logging.getLogger("axolotl")
if TYPE_CHECKING:
from peft import PeftConfig # noqa: F401
from axolotl.utils.dict import DictDefault # noqa: F401
def load_tokenizer(cfg):
tokenizer_kwargs = {}
use_fast = True # this is the default
if cfg.tokenizer_use_fast is not None:
use_fast = cfg.tokenizer_use_fast
if cfg.tokenizer_legacy is not None:
# True is the default w/ https://github.com/huggingface/transformers/pull/25224
tokenizer_kwargs["legacy"] = cfg.tokenizer_legacy
tokenizer_cls = AutoTokenizer
if cfg.tokenizer_type:
tokenizer_cls = getattr(transformers, cfg.tokenizer_type)
tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
tokenizer = tokenizer_cls.from_pretrained(
tokenizer_config,
trust_remote_code=cfg.trust_remote_code or False,
use_fast=use_fast,
**tokenizer_kwargs,
)
if tokenizer.__class__.__name__ in [
"LlamaTokenizer",
"LlamaTokenizerFast",
]:
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.special_tokens:
for k, val in cfg.special_tokens.items():
tokenizer.add_special_tokens({k: val})
if cfg.tokens:
tokenizer.add_tokens(list(cfg.tokens))
return tokenizer
def load_model(
cfg, tokenizer
): # type: (DictDefault, PreTrainedTokenizerBase) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
"""
Load a model for a given configuration and tokenizer.
"""
base_model = cfg.base_model
base_model_config = cfg.base_model_config
model_type = cfg.model_type
# TODO refactor as a kwarg
load_in_8bit = cfg.load_in_8bit
cfg.is_llama_derived_model = (
"llama" in base_model
or (cfg.model_type and "llama" in cfg.model_type.lower())
or cfg.is_llama_derived_model
)
if cfg.is_llama_derived_model and cfg.flash_attention:
if cfg.device not in ["mps", "cpu"] and not cfg.inference:
from axolotl.monkeypatch.llama_attn_hijack_flash import (
replace_llama_attn_with_flash_attn,
)
LOG.info("patching with flash attention")
replace_llama_attn_with_flash_attn(packed=cfg.sample_packing)
elif cfg.is_llama_derived_model and cfg.xformers_attention:
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
hijack_llama_attention,
)
LOG.info("patching with xformers attention")
hijack_llama_attention()
elif cfg.is_llama_derived_model and cfg.sdp_attention:
from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention
LOG.info("patching with sdp attention")
hijack_llama_sdp_attention()
elif cfg.is_llama_derived_model and cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import (
MEM_TOKEN,
patch_llama_with_landmark_attn,
)
LOG.info("patching with landmark attention")
patch_llama_with_landmark_attn()
# Note: This might overwrite previous additional_special_tokens
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
if cfg.is_llama_derived_model and cfg.xpos_rope:
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
replace_llama_rope_with_xpos_rope,
)
LOG.info("patching with xpos rope")
replace_llama_rope_with_xpos_rope()
if (
cfg.is_llama_derived_model
and (cfg.max_packed_sequence_len or cfg.sample_packing)
and not cfg.inference
):
from axolotl.monkeypatch.llama_expand_mask import hijack_expand_mask
LOG.info("patching _expand_mask")
hijack_expand_mask()
if cfg.bf16 or cfg.bfloat16:
torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
try:
if cfg.gptq:
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model,
)
replace_peft_model_with_int4_lora_model()
except Exception as err:
LOG.exception(err)
raise err
if not cfg.gptq and (
(cfg.adapter == "lora" and load_in_8bit)
or (cfg.adapter == "qlora" and cfg.load_in_4bit)
):
try:
from peft import prepare_model_for_kbit_training
except ImportError:
# For backward compatibility
from peft import (
prepare_model_for_int8_training as prepare_model_for_kbit_training,
)
model_kwargs = {}
if cfg.model_revision:
model_kwargs["revision"] = cfg.model_revision
if cfg.adapter == "qlora" and cfg.load_in_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
try:
if cfg.gptq and cfg.is_llama_derived_model:
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
from huggingface_hub import snapshot_download
try:
snapshot_download_kwargs = {}
if cfg.base_model_ignore_patterns:
snapshot_download_kwargs[
"ignore_patterns"
] = cfg.base_model_ignore_patterns
cache_model_path = Path(
snapshot_download(base_model, **snapshot_download_kwargs)
)
files = (
list(cache_model_path.glob("*.pt"))
+ list(cache_model_path.glob("*.safetensors"))
+ list(cache_model_path.glob("*.bin"))
)
if len(files) > 0:
model_path = str(files[0])
else:
LOG.warning(
"unable to find a cached model file, this will likely fail..."
)
model_path = str(cache_model_path)
except Exception: # pylint: disable=broad-exception-caught
model_path = cfg.base_model
model, _ = load_llama_model_4bit_low_ram(
base_model_config if base_model_config else base_model,
model_path,
device_map=cfg.device_map,
half=cfg.fp16,
groupsize=cfg.gptq_groupsize if cfg.gptq_groupsize else -1,
is_v1_model=cfg.gptq_model_v1
if cfg.gptq_model_v1 is not None
else True,
)
load_in_8bit = False
elif cfg.is_llama_derived_model and not cfg.trust_remote_code:
from transformers import LlamaForCausalLM
config_kwargs = {}
if cfg.rope_scaling:
config_kwargs["rope_scaling"] = cfg.rope_scaling
config = LlamaConfig.from_pretrained(
base_model_config,
**config_kwargs,
)
model = LlamaForCausalLM.from_pretrained(
base_model,
config=config,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
**model_kwargs,
)
# elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
# This is a WIP, still an issue with the backward pass
# RuntimeError: grad can be implicitly created only for scalar outputs
# TODO: try config.sequence_parallel = False
# # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12
# # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components
# # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442
# from flash_attn.utils.pretrained import state_dict_from_pretrained
# from flash_attn.models.gpt import GPTLMHeadModel
# from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
# from transformers import GPTNeoXConfig
# config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model))
# config.use_flash_attn = True
# config.fused_bias_fc = True
# config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
# config.activation_function = "gelu_fast"
# config.fused_dropout_add_ln = True
# # config.residual_in_fp32 = True
#
# model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained(
# base_model,
# config,
# dtype=torch_dtype,
# device=cfg.device,
# )
# model.train() # sets to train instead of eval mode
elif model_type and not cfg.trust_remote_code:
model = getattr(transformers, model_type).from_pretrained(
base_model,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
else:
config = AutoConfig.from_pretrained(
base_model,
trust_remote_code=cfg.trust_remote_code or False,
)
# Shouldn't be a problem most of the time. will obviously error if the model doesn't support this
# when training starts
if (
hasattr(config, "max_seq_len")
and config.max_seq_len
and cfg.sequence_len > config.max_seq_len
):
config.max_seq_len = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
elif (
hasattr(config, "max_sequence_length")
and config.max_sequence_length
and cfg.sequence_len > config.max_sequence_length
):
config.max_sequence_length = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
except Exception as err: # pylint: disable=broad-exception-caught
LOG.error(
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
)
LOG.exception(err)
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
embeddings_len = (
math.ceil(len(tokenizer) / 32) * 32
if cfg.resize_token_embeddings_to_32x
else len(tokenizer)
)
model.resize_token_embeddings(embeddings_len)
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings
and cfg.sequence_len >= model.config.max_position_embeddings
):
LOG.warning(
f"increasing model.config.max_position_embeddings to {cfg.sequence_len}"
)
model.config.max_position_embeddings = cfg.sequence_len
if model.device.type == "cuda":
log_gpu_memory_usage(LOG, "after model load", model.device)
if not cfg.gptq and (
(cfg.adapter == "lora" and load_in_8bit)
or (cfg.adapter == "qlora" and cfg.load_in_4bit)
):
LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=cfg.gradient_checkpointing
)
# LlamaRMSNorm layers are in fp32 after kbit_training, so we need to
# convert them back to fp16/bf16 for flash-attn compatibility.
if cfg.flash_attention and cfg.is_llama_derived_model:
for name, module in model.named_modules():
if "norm" in name:
module.to(torch_dtype)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module.to(torch_dtype)
model, lora_config = load_adapter(model, cfg, cfg.adapter)
if cfg.ddp and not load_in_8bit:
model.to(f"cuda:{cfg.local_rank}")
if cfg.gptq:
# Scales to half
LOG.info("Fitting 4bit scales and zeros to half")
for _, module in model.named_modules():
if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str(
type(module)
):
if hasattr(module, "is_v1_model") and module.is_v1_model:
module.zeros = module.zeros.half()
module.scales = module.scales.half()
module.bias = module.bias.half()
if (
torch.cuda.device_count() > 1
and int(os.getenv("WORLD_SIZE", "1")) > 1
and (cfg.gptq or cfg.load_in_4bit)
):
# llama is PROBABLY model parallelizable, but the default isn't that it is
# so let's only set it for the 4bit, see
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
setattr(model, "is_parallelizable", True)
setattr(model, "model_parallel", True)
requires_grad = []
for name, param in model.named_parameters(recurse=True):
if param.requires_grad:
requires_grad.append(f"{name}: {param.requires_grad}")
if len(requires_grad) == 0:
LOG.warning("there are no parameters that require gradient updates")
model.config.use_cache = False
if cfg.flash_optimum:
model = BetterTransformer.transform(model)
if cfg.adapter is not None:
log_gpu_memory_usage(LOG, "after adapters", model.device)
# TODO resume_from_checkpoint handling
return model, lora_config
def load_adapter(model, cfg, adapter):
# type: (PreTrainedModel, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
if adapter is None:
return model, None
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
if adapter in ["lora", "qlora"]:
return load_lora(model, cfg)
if adapter == "llama-adapter":
return load_llama_adapter(model, cfg)
raise NotImplementedError(f"{adapter} peft adapter not available")
def load_llama_adapter(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import AdaptionPromptConfig, PeftModel, get_peft_model
peft_config = AdaptionPromptConfig(
adapter_layers=cfg.peft_adapter.layers, # layers (L)
adapter_len=cfg.peft_adapter.len, # prompt length (K)
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
LOG.info("Loading pretained LORA")
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
def find_all_linear_names(bits, model):
cls = (
bnb.nn.Linear4bit
if bits == 4
else (bnb.nn.Linear8bitLt if bits == 8 else torch.nn.Linear)
)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def load_lora(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import LoraConfig, PeftModel, get_peft_model
lora_target_modules = list(cfg.lora_target_modules or [])
if cfg.lora_target_linear:
bits = None
if cfg.load_in_4bit:
bits = 4
elif cfg.load_in_8bit:
bits = 8
linear_names = find_all_linear_names(bits, model)
LOG.info(f"found linear modules: {repr(linear_names)}")
lora_target_modules = list(set(lora_target_modules + linear_names))
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
is_trainable=not cfg.inference,
)
else:
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, lora_config
|