winglian commited on
Commit
e65aeed
·
1 Parent(s): e6fdeb0

fix relative path for fixtures

Browse files
ds_config.json CHANGED
@@ -1,58 +1,57 @@
1
  {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  "bf16": {
3
  "enabled": "auto"
4
  },
5
  "fp16": {
6
  "enabled": "auto",
 
7
  "loss_scale": 0,
 
8
  "loss_scale_window": 1000,
9
- "initial_scale_power": 16,
10
  "hysteresis": 2,
11
  "min_loss_scale": 1
12
  },
13
  "optimizer": {
14
- "type": "Adam",
15
  "params": {
16
  "lr": "auto",
17
- "betas": "auto",
18
- "eps": "auto",
 
 
 
19
  "weight_decay": "auto"
20
  }
21
  },
22
  "scheduler": {
23
- "type": "WarmupDecayLR",
24
  "params": {
25
- "warmup_min_lr": "auto",
26
- "warmup_max_lr": "auto",
27
- "warmup_num_steps": "auto",
28
- "total_num_steps": "auto"
29
  }
30
  },
31
- "zero_optimization": {
32
- "stage": 2,
33
- "offload_optimizer": {
34
- "device": "cpu",
35
- "pin_memory": true
36
- },
37
- "offload_param": {
38
- "device": "cpu",
39
- "pin_memory": true
40
- },
41
- "overlap_comm": true,
42
- "allgather_partitions": true,
43
- "allgather_bucket_size": 5e8,
44
- "contiguous_gradients": true,
45
- "reduce_bucket_size": "auto",
46
- "reduce_scatter": true,
47
- "stage3_max_live_parameters": 0,
48
- "stage3_max_reuse_distance": 0,
49
- "stage3_gather_16bit_weights_on_model_save": true
50
- },
51
- "gradient_accumulation_steps": "auto",
52
- "gradient_clipping": "auto",
53
- "steps_per_print": 5,
54
  "train_batch_size": "auto",
55
  "train_micro_batch_size_per_gpu": "auto",
56
- "wall_clock_breakdown": false,
57
- "round_robin_gradients": true
58
  }
 
1
  {
2
+ "zero_optimization": {
3
+ "stage": 3,
4
+ "offload_optimizer": {
5
+ "device": "cpu",
6
+ "pin_memory": true
7
+ },
8
+ "offload_param": {
9
+ "device": "cpu",
10
+ "pin_memory": true
11
+ },
12
+ "overlap_comm": true,
13
+ "contiguous_gradients": true,
14
+ "sub_group_size": 0,
15
+ "reduce_bucket_size": "auto",
16
+ "stage3_prefetch_bucket_size": "auto",
17
+ "stage3_param_persistence_threshold": "auto",
18
+ "stage3_max_live_parameters": 0,
19
+ "stage3_max_reuse_distance": 0,
20
+ "stage3_gather_16bit_weights_on_model_save": true
21
+ },
22
  "bf16": {
23
  "enabled": "auto"
24
  },
25
  "fp16": {
26
  "enabled": "auto",
27
+ "auto_cast": false,
28
  "loss_scale": 0,
29
+ "initial_scale_power": 32,
30
  "loss_scale_window": 1000,
 
31
  "hysteresis": 2,
32
  "min_loss_scale": 1
33
  },
34
  "optimizer": {
35
+ "type": "AdamW",
36
  "params": {
37
  "lr": "auto",
38
+ "betas": [
39
+ 0.9,
40
+ 0.999
41
+ ],
42
+ "eps": 1e-8,
43
  "weight_decay": "auto"
44
  }
45
  },
46
  "scheduler": {
47
+ "type": "OneCycle",
48
  "params": {
49
+ "cycle_min_lr": 0.00001,
50
+ "cycle_max_lr": 0.00003,
51
+ "cycle_first_step_size": 120
 
52
  }
53
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  "train_batch_size": "auto",
55
  "train_micro_batch_size_per_gpu": "auto",
56
+ "wall_clock_breakdown": false
 
57
  }
src/axolotl/utils/models.py CHANGED
@@ -125,7 +125,7 @@ def load_model(
125
  load_in_4bit=True,
126
  llm_int8_threshold=6.0,
127
  llm_int8_has_fp16_weight=False,
128
- bnb_4bit_compute_dtype=torch.float16,
129
  bnb_4bit_use_double_quant=True,
130
  bnb_4bit_quant_type="nf4",
131
  )
@@ -174,7 +174,7 @@ def load_model(
174
  load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
175
  load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
176
  torch_dtype=torch_dtype,
177
- device_map=cfg.device_map,
178
  **model_kwargs,
179
  )
180
  # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
@@ -273,13 +273,13 @@ def load_model(
273
  if (
274
  torch.cuda.device_count() > 1
275
  and int(os.getenv("WORLD_SIZE", "1")) > 1
276
- and cfg.gptq
277
  ):
278
  # llama is PROBABLY model parallelizable, but the default isn't that it is
279
  # so let's only set it for the 4bit, see
280
  # https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
281
- model.is_parallelizable = True
282
- model.model_parallel = True
283
 
284
  requires_grad = []
285
  for name, param in model.named_parameters(recurse=True):
 
125
  load_in_4bit=True,
126
  llm_int8_threshold=6.0,
127
  llm_int8_has_fp16_weight=False,
128
+ bnb_4bit_compute_dtype=torch_dtype,
129
  bnb_4bit_use_double_quant=True,
130
  bnb_4bit_quant_type="nf4",
131
  )
 
174
  load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
175
  load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
176
  torch_dtype=torch_dtype,
177
+ device_map="auto" if cfg.world_size == 1 else cfg.device_map,
178
  **model_kwargs,
179
  )
180
  # elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
 
273
  if (
274
  torch.cuda.device_count() > 1
275
  and int(os.getenv("WORLD_SIZE", "1")) > 1
276
+ and (cfg.gptq or cfg.load_in_4bit)
277
  ):
278
  # llama is PROBABLY model parallelizable, but the default isn't that it is
279
  # so let's only set it for the 4bit, see
280
  # https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
281
+ setattr(model, 'is_parallelizable', True)
282
+ setattr(model, 'model_parallel', True)
283
 
284
  requires_grad = []
285
  for name, param in model.named_parameters(recurse=True):
src/axolotl/utils/trainer.py CHANGED
@@ -113,7 +113,8 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
113
  output_dir=cfg.output_dir,
114
  save_total_limit=3,
115
  load_best_model_at_end=True
116
- if cfg.val_set_size > 0
 
117
  and save_steps is not None
118
  and save_steps % eval_steps == 0
119
  and cfg.load_in_8bit is not True
@@ -218,7 +219,7 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
218
 
219
  trainer_cls = (
220
  OneCycleLRSchedulerTrainer
221
- if cfg.lr_scheduler == "one_cycle" and cfg.fsdp
222
  else transformers.Trainer
223
  )
224
  trainer = trainer_cls(
 
113
  output_dir=cfg.output_dir,
114
  save_total_limit=3,
115
  load_best_model_at_end=True
116
+ if cfg.load_best_model_at_end is not False # if explicitly set to False, it should be resort to False
117
+ and cfg.val_set_size > 0
118
  and save_steps is not None
119
  and save_steps % eval_steps == 0
120
  and cfg.load_in_8bit is not True
 
219
 
220
  trainer_cls = (
221
  OneCycleLRSchedulerTrainer
222
+ if cfg.lr_scheduler == "one_cycle" and (cfg.fsdp or cfg.adapter == "qlora")
223
  else transformers.Trainer
224
  )
225
  trainer = trainer_cls(
tests/test_prompt_tokenizers.py CHANGED
@@ -1,6 +1,7 @@
1
  import json
2
  import logging
3
  import unittest
 
4
 
5
  from transformers import AutoTokenizer
6
 
@@ -22,10 +23,11 @@ class TestPromptTokenizationStrategies(unittest.TestCase):
22
  )
23
 
24
  def test_sharegpt_integration(self):
25
- with open("./fixtures/conversation.json", "r") as fin:
 
26
  data = fin.read()
27
  conversation = json.loads(data)
28
- with open("./fixtures/conversation.tokenized.json", "r") as fin:
29
  data = fin.read()
30
  tokenized_conversation = json.loads(data)
31
  prompter = ShareGPTPrompter("chat")
 
1
  import json
2
  import logging
3
  import unittest
4
+ from pathlib import Path
5
 
6
  from transformers import AutoTokenizer
7
 
 
23
  )
24
 
25
  def test_sharegpt_integration(self):
26
+ print(Path(__file__).parent)
27
+ with open(Path(__file__).parent / "fixtures/conversation.json", "r") as fin:
28
  data = fin.read()
29
  conversation = json.loads(data)
30
+ with open(Path(__file__).parent / "fixtures/conversation.tokenized.json", "r") as fin:
31
  data = fin.read()
32
  tokenized_conversation = json.loads(data)
33
  prompter = ShareGPTPrompter("chat")