|
--- |
|
base_model: distilbert-base-uncased |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: distilbert-base-uncased-lora-text-classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-lora-text-classification |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2966 |
|
- Accuracy: {'accuracy': 0.886} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------------------:| |
|
| No log | 1.0 | 125 | 0.2972 | {'accuracy': 0.873} | |
|
| No log | 2.0 | 250 | 0.4349 | {'accuracy': 0.857} | |
|
| No log | 3.0 | 375 | 0.4850 | {'accuracy': 0.861} | |
|
| 0.2757 | 4.0 | 500 | 0.4277 | {'accuracy': 0.865} | |
|
| 0.2757 | 5.0 | 625 | 0.4342 | {'accuracy': 0.881} | |
|
| 0.2757 | 6.0 | 750 | 0.4613 | {'accuracy': 0.88} | |
|
| 0.2757 | 7.0 | 875 | 0.6101 | {'accuracy': 0.879} | |
|
| 0.1047 | 8.0 | 1000 | 0.6068 | {'accuracy': 0.877} | |
|
| 0.1047 | 9.0 | 1125 | 0.6253 | {'accuracy': 0.878} | |
|
| 0.1047 | 10.0 | 1250 | 0.6737 | {'accuracy': 0.89} | |
|
| 0.1047 | 11.0 | 1375 | 0.8528 | {'accuracy': 0.867} | |
|
| 0.0462 | 12.0 | 1500 | 0.8829 | {'accuracy': 0.879} | |
|
| 0.0462 | 13.0 | 1625 | 0.8560 | {'accuracy': 0.881} | |
|
| 0.0462 | 14.0 | 1750 | 0.9111 | {'accuracy': 0.877} | |
|
| 0.0462 | 15.0 | 1875 | 0.9331 | {'accuracy': 0.883} | |
|
| 0.0329 | 16.0 | 2000 | 0.8129 | {'accuracy': 0.879} | |
|
| 0.0329 | 17.0 | 2125 | 0.8663 | {'accuracy': 0.882} | |
|
| 0.0329 | 18.0 | 2250 | 0.8163 | {'accuracy': 0.887} | |
|
| 0.0329 | 19.0 | 2375 | 0.7679 | {'accuracy': 0.891} | |
|
| 0.0188 | 20.0 | 2500 | 0.7408 | {'accuracy': 0.893} | |
|
| 0.0188 | 21.0 | 2625 | 0.8557 | {'accuracy': 0.889} | |
|
| 0.0188 | 22.0 | 2750 | 0.9201 | {'accuracy': 0.878} | |
|
| 0.0188 | 23.0 | 2875 | 0.8839 | {'accuracy': 0.893} | |
|
| 0.0078 | 24.0 | 3000 | 0.9388 | {'accuracy': 0.886} | |
|
| 0.0078 | 25.0 | 3125 | 0.9004 | {'accuracy': 0.877} | |
|
| 0.0078 | 26.0 | 3250 | 0.9489 | {'accuracy': 0.89} | |
|
| 0.0078 | 27.0 | 3375 | 1.0055 | {'accuracy': 0.88} | |
|
| 0.0241 | 28.0 | 3500 | 0.9758 | {'accuracy': 0.88} | |
|
| 0.0241 | 29.0 | 3625 | 1.0809 | {'accuracy': 0.876} | |
|
| 0.0241 | 30.0 | 3750 | 1.0976 | {'accuracy': 0.858} | |
|
| 0.0241 | 31.0 | 3875 | 1.1300 | {'accuracy': 0.859} | |
|
| 0.0293 | 32.0 | 4000 | 1.1039 | {'accuracy': 0.869} | |
|
| 0.0293 | 33.0 | 4125 | 0.9788 | {'accuracy': 0.875} | |
|
| 0.0293 | 34.0 | 4250 | 1.0639 | {'accuracy': 0.873} | |
|
| 0.0293 | 35.0 | 4375 | 1.2398 | {'accuracy': 0.866} | |
|
| 0.0088 | 36.0 | 4500 | 1.1332 | {'accuracy': 0.874} | |
|
| 0.0088 | 37.0 | 4625 | 1.1145 | {'accuracy': 0.877} | |
|
| 0.0088 | 38.0 | 4750 | 1.1481 | {'accuracy': 0.867} | |
|
| 0.0088 | 39.0 | 4875 | 1.3712 | {'accuracy': 0.87} | |
|
| 0.0054 | 40.0 | 5000 | 1.3314 | {'accuracy': 0.871} | |
|
| 0.0054 | 41.0 | 5125 | 1.2189 | {'accuracy': 0.879} | |
|
| 0.0054 | 42.0 | 5250 | 1.4673 | {'accuracy': 0.864} | |
|
| 0.0054 | 43.0 | 5375 | 1.2771 | {'accuracy': 0.885} | |
|
| 0.0097 | 44.0 | 5500 | 0.9926 | {'accuracy': 0.879} | |
|
| 0.0097 | 45.0 | 5625 | 1.0428 | {'accuracy': 0.881} | |
|
| 0.0097 | 46.0 | 5750 | 1.3764 | {'accuracy': 0.867} | |
|
| 0.0097 | 47.0 | 5875 | 1.2730 | {'accuracy': 0.88} | |
|
| 0.0076 | 48.0 | 6000 | 1.3435 | {'accuracy': 0.895} | |
|
| 0.0076 | 49.0 | 6125 | 1.4281 | {'accuracy': 0.883} | |
|
| 0.0076 | 50.0 | 6250 | 1.4440 | {'accuracy': 0.874} | |
|
| 0.0076 | 51.0 | 6375 | 1.5093 | {'accuracy': 0.88} | |
|
| 0.0113 | 52.0 | 6500 | 1.2309 | {'accuracy': 0.877} | |
|
| 0.0113 | 53.0 | 6625 | 1.1447 | {'accuracy': 0.88} | |
|
| 0.0113 | 54.0 | 6750 | 1.1743 | {'accuracy': 0.877} | |
|
| 0.0113 | 55.0 | 6875 | 1.4742 | {'accuracy': 0.867} | |
|
| 0.0179 | 56.0 | 7000 | 1.2592 | {'accuracy': 0.882} | |
|
| 0.0179 | 57.0 | 7125 | 1.2337 | {'accuracy': 0.889} | |
|
| 0.0179 | 58.0 | 7250 | 1.1486 | {'accuracy': 0.894} | |
|
| 0.0179 | 59.0 | 7375 | 1.1452 | {'accuracy': 0.89} | |
|
| 0.0059 | 60.0 | 7500 | 1.1572 | {'accuracy': 0.891} | |
|
| 0.0059 | 61.0 | 7625 | 1.1582 | {'accuracy': 0.891} | |
|
| 0.0059 | 62.0 | 7750 | 1.3938 | {'accuracy': 0.884} | |
|
| 0.0059 | 63.0 | 7875 | 1.2767 | {'accuracy': 0.89} | |
|
| 0.0006 | 64.0 | 8000 | 1.2217 | {'accuracy': 0.89} | |
|
| 0.0006 | 65.0 | 8125 | 1.2232 | {'accuracy': 0.89} | |
|
| 0.0006 | 66.0 | 8250 | 1.2689 | {'accuracy': 0.894} | |
|
| 0.0006 | 67.0 | 8375 | 1.2529 | {'accuracy': 0.894} | |
|
| 0.0 | 68.0 | 8500 | 1.2292 | {'accuracy': 0.894} | |
|
| 0.0 | 69.0 | 8625 | 1.2053 | {'accuracy': 0.893} | |
|
| 0.0 | 70.0 | 8750 | 1.2587 | {'accuracy': 0.891} | |
|
| 0.0 | 71.0 | 8875 | 1.2803 | {'accuracy': 0.89} | |
|
| 0.0005 | 72.0 | 9000 | 1.3449 | {'accuracy': 0.889} | |
|
| 0.0005 | 73.0 | 9125 | 1.3193 | {'accuracy': 0.891} | |
|
| 0.0005 | 74.0 | 9250 | 1.3032 | {'accuracy': 0.892} | |
|
| 0.0005 | 75.0 | 9375 | 1.3586 | {'accuracy': 0.895} | |
|
| 0.0006 | 76.0 | 9500 | 1.3457 | {'accuracy': 0.894} | |
|
| 0.0006 | 77.0 | 9625 | 1.3742 | {'accuracy': 0.892} | |
|
| 0.0006 | 78.0 | 9750 | 1.3986 | {'accuracy': 0.891} | |
|
| 0.0006 | 79.0 | 9875 | 1.5180 | {'accuracy': 0.884} | |
|
| 0.0022 | 80.0 | 10000 | 1.5658 | {'accuracy': 0.879} | |
|
| 0.0022 | 81.0 | 10125 | 1.5500 | {'accuracy': 0.879} | |
|
| 0.0022 | 82.0 | 10250 | 1.4174 | {'accuracy': 0.888} | |
|
| 0.0022 | 83.0 | 10375 | 1.3601 | {'accuracy': 0.89} | |
|
| 0.0023 | 84.0 | 10500 | 1.4022 | {'accuracy': 0.887} | |
|
| 0.0023 | 85.0 | 10625 | 1.3639 | {'accuracy': 0.89} | |
|
| 0.0023 | 86.0 | 10750 | 1.2567 | {'accuracy': 0.887} | |
|
| 0.0023 | 87.0 | 10875 | 1.3608 | {'accuracy': 0.89} | |
|
| 0.0043 | 88.0 | 11000 | 1.3487 | {'accuracy': 0.888} | |
|
| 0.0043 | 89.0 | 11125 | 1.3392 | {'accuracy': 0.889} | |
|
| 0.0043 | 90.0 | 11250 | 1.3368 | {'accuracy': 0.888} | |
|
| 0.0043 | 91.0 | 11375 | 1.3246 | {'accuracy': 0.881} | |
|
| 0.0002 | 92.0 | 11500 | 1.3173 | {'accuracy': 0.881} | |
|
| 0.0002 | 93.0 | 11625 | 1.2988 | {'accuracy': 0.888} | |
|
| 0.0002 | 94.0 | 11750 | 1.3090 | {'accuracy': 0.882} | |
|
| 0.0002 | 95.0 | 11875 | 1.3269 | {'accuracy': 0.894} | |
|
| 0.0006 | 96.0 | 12000 | 1.2966 | {'accuracy': 0.885} | |
|
| 0.0006 | 97.0 | 12125 | 1.2965 | {'accuracy': 0.885} | |
|
| 0.0006 | 98.0 | 12250 | 1.2966 | {'accuracy': 0.886} | |
|
| 0.0006 | 99.0 | 12375 | 1.2965 | {'accuracy': 0.886} | |
|
| 0.0 | 100.0 | 12500 | 1.2966 | {'accuracy': 0.886} | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.43.1 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |