distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2966
  • Accuracy: {'accuracy': 0.886}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.2972 {'accuracy': 0.873}
No log 2.0 250 0.4349 {'accuracy': 0.857}
No log 3.0 375 0.4850 {'accuracy': 0.861}
0.2757 4.0 500 0.4277 {'accuracy': 0.865}
0.2757 5.0 625 0.4342 {'accuracy': 0.881}
0.2757 6.0 750 0.4613 {'accuracy': 0.88}
0.2757 7.0 875 0.6101 {'accuracy': 0.879}
0.1047 8.0 1000 0.6068 {'accuracy': 0.877}
0.1047 9.0 1125 0.6253 {'accuracy': 0.878}
0.1047 10.0 1250 0.6737 {'accuracy': 0.89}
0.1047 11.0 1375 0.8528 {'accuracy': 0.867}
0.0462 12.0 1500 0.8829 {'accuracy': 0.879}
0.0462 13.0 1625 0.8560 {'accuracy': 0.881}
0.0462 14.0 1750 0.9111 {'accuracy': 0.877}
0.0462 15.0 1875 0.9331 {'accuracy': 0.883}
0.0329 16.0 2000 0.8129 {'accuracy': 0.879}
0.0329 17.0 2125 0.8663 {'accuracy': 0.882}
0.0329 18.0 2250 0.8163 {'accuracy': 0.887}
0.0329 19.0 2375 0.7679 {'accuracy': 0.891}
0.0188 20.0 2500 0.7408 {'accuracy': 0.893}
0.0188 21.0 2625 0.8557 {'accuracy': 0.889}
0.0188 22.0 2750 0.9201 {'accuracy': 0.878}
0.0188 23.0 2875 0.8839 {'accuracy': 0.893}
0.0078 24.0 3000 0.9388 {'accuracy': 0.886}
0.0078 25.0 3125 0.9004 {'accuracy': 0.877}
0.0078 26.0 3250 0.9489 {'accuracy': 0.89}
0.0078 27.0 3375 1.0055 {'accuracy': 0.88}
0.0241 28.0 3500 0.9758 {'accuracy': 0.88}
0.0241 29.0 3625 1.0809 {'accuracy': 0.876}
0.0241 30.0 3750 1.0976 {'accuracy': 0.858}
0.0241 31.0 3875 1.1300 {'accuracy': 0.859}
0.0293 32.0 4000 1.1039 {'accuracy': 0.869}
0.0293 33.0 4125 0.9788 {'accuracy': 0.875}
0.0293 34.0 4250 1.0639 {'accuracy': 0.873}
0.0293 35.0 4375 1.2398 {'accuracy': 0.866}
0.0088 36.0 4500 1.1332 {'accuracy': 0.874}
0.0088 37.0 4625 1.1145 {'accuracy': 0.877}
0.0088 38.0 4750 1.1481 {'accuracy': 0.867}
0.0088 39.0 4875 1.3712 {'accuracy': 0.87}
0.0054 40.0 5000 1.3314 {'accuracy': 0.871}
0.0054 41.0 5125 1.2189 {'accuracy': 0.879}
0.0054 42.0 5250 1.4673 {'accuracy': 0.864}
0.0054 43.0 5375 1.2771 {'accuracy': 0.885}
0.0097 44.0 5500 0.9926 {'accuracy': 0.879}
0.0097 45.0 5625 1.0428 {'accuracy': 0.881}
0.0097 46.0 5750 1.3764 {'accuracy': 0.867}
0.0097 47.0 5875 1.2730 {'accuracy': 0.88}
0.0076 48.0 6000 1.3435 {'accuracy': 0.895}
0.0076 49.0 6125 1.4281 {'accuracy': 0.883}
0.0076 50.0 6250 1.4440 {'accuracy': 0.874}
0.0076 51.0 6375 1.5093 {'accuracy': 0.88}
0.0113 52.0 6500 1.2309 {'accuracy': 0.877}
0.0113 53.0 6625 1.1447 {'accuracy': 0.88}
0.0113 54.0 6750 1.1743 {'accuracy': 0.877}
0.0113 55.0 6875 1.4742 {'accuracy': 0.867}
0.0179 56.0 7000 1.2592 {'accuracy': 0.882}
0.0179 57.0 7125 1.2337 {'accuracy': 0.889}
0.0179 58.0 7250 1.1486 {'accuracy': 0.894}
0.0179 59.0 7375 1.1452 {'accuracy': 0.89}
0.0059 60.0 7500 1.1572 {'accuracy': 0.891}
0.0059 61.0 7625 1.1582 {'accuracy': 0.891}
0.0059 62.0 7750 1.3938 {'accuracy': 0.884}
0.0059 63.0 7875 1.2767 {'accuracy': 0.89}
0.0006 64.0 8000 1.2217 {'accuracy': 0.89}
0.0006 65.0 8125 1.2232 {'accuracy': 0.89}
0.0006 66.0 8250 1.2689 {'accuracy': 0.894}
0.0006 67.0 8375 1.2529 {'accuracy': 0.894}
0.0 68.0 8500 1.2292 {'accuracy': 0.894}
0.0 69.0 8625 1.2053 {'accuracy': 0.893}
0.0 70.0 8750 1.2587 {'accuracy': 0.891}
0.0 71.0 8875 1.2803 {'accuracy': 0.89}
0.0005 72.0 9000 1.3449 {'accuracy': 0.889}
0.0005 73.0 9125 1.3193 {'accuracy': 0.891}
0.0005 74.0 9250 1.3032 {'accuracy': 0.892}
0.0005 75.0 9375 1.3586 {'accuracy': 0.895}
0.0006 76.0 9500 1.3457 {'accuracy': 0.894}
0.0006 77.0 9625 1.3742 {'accuracy': 0.892}
0.0006 78.0 9750 1.3986 {'accuracy': 0.891}
0.0006 79.0 9875 1.5180 {'accuracy': 0.884}
0.0022 80.0 10000 1.5658 {'accuracy': 0.879}
0.0022 81.0 10125 1.5500 {'accuracy': 0.879}
0.0022 82.0 10250 1.4174 {'accuracy': 0.888}
0.0022 83.0 10375 1.3601 {'accuracy': 0.89}
0.0023 84.0 10500 1.4022 {'accuracy': 0.887}
0.0023 85.0 10625 1.3639 {'accuracy': 0.89}
0.0023 86.0 10750 1.2567 {'accuracy': 0.887}
0.0023 87.0 10875 1.3608 {'accuracy': 0.89}
0.0043 88.0 11000 1.3487 {'accuracy': 0.888}
0.0043 89.0 11125 1.3392 {'accuracy': 0.889}
0.0043 90.0 11250 1.3368 {'accuracy': 0.888}
0.0043 91.0 11375 1.3246 {'accuracy': 0.881}
0.0002 92.0 11500 1.3173 {'accuracy': 0.881}
0.0002 93.0 11625 1.2988 {'accuracy': 0.888}
0.0002 94.0 11750 1.3090 {'accuracy': 0.882}
0.0002 95.0 11875 1.3269 {'accuracy': 0.894}
0.0006 96.0 12000 1.2966 {'accuracy': 0.885}
0.0006 97.0 12125 1.2965 {'accuracy': 0.885}
0.0006 98.0 12250 1.2966 {'accuracy': 0.886}
0.0006 99.0 12375 1.2965 {'accuracy': 0.886}
0.0 100.0 12500 1.2966 {'accuracy': 0.886}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.43.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sophonai/distilbert-base-uncased-lora-text-classification

Adapter
(223)
this model