sophonai commited on
Commit
cbeaf2a
·
verified ·
1 Parent(s): 3379810

sophonai/lora-test-distilbert-base-uncased

Browse files
README.md CHANGED
@@ -1,15 +1,15 @@
1
- ---
2
- base_model: distilbert-base-uncased
3
- library_name: peft
4
- license: apache-2.0
5
- metrics:
6
- - accuracy
7
- tags:
8
- - generated_from_trainer
9
- model-index:
10
- - name: distilbert-base-uncased-lora-text-classification
11
- results: []
12
- ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 1.0845
22
- - Accuracy: {'accuracy': 0.884}
23
 
24
  ## Model description
25
 
@@ -44,68 +44,118 @@ The following hyperparameters were used during training:
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
- - num_epochs: 50
48
 
49
  ### Training results
50
 
51
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
- |:-------------:|:-----:|:----:|:---------------:|:-------------------:|
53
- | No log | 1.0 | 125 | 0.3046 | {'accuracy': 0.89} |
54
- | No log | 2.0 | 250 | 0.3899 | {'accuracy': 0.853} |
55
- | No log | 3.0 | 375 | 0.5440 | {'accuracy': 0.844} |
56
- | 0.2813 | 4.0 | 500 | 0.4597 | {'accuracy': 0.867} |
57
- | 0.2813 | 5.0 | 625 | 0.5280 | {'accuracy': 0.88} |
58
- | 0.2813 | 6.0 | 750 | 0.5096 | {'accuracy': 0.877} |
59
- | 0.2813 | 7.0 | 875 | 0.6435 | {'accuracy': 0.881} |
60
- | 0.0793 | 8.0 | 1000 | 0.6281 | {'accuracy': 0.883} |
61
- | 0.0793 | 9.0 | 1125 | 0.7278 | {'accuracy': 0.868} |
62
- | 0.0793 | 10.0 | 1250 | 0.6827 | {'accuracy': 0.876} |
63
- | 0.0793 | 11.0 | 1375 | 0.8269 | {'accuracy': 0.86} |
64
- | 0.0502 | 12.0 | 1500 | 0.7706 | {'accuracy': 0.866} |
65
- | 0.0502 | 13.0 | 1625 | 0.8552 | {'accuracy': 0.867} |
66
- | 0.0502 | 14.0 | 1750 | 1.0037 | {'accuracy': 0.872} |
67
- | 0.0502 | 15.0 | 1875 | 0.8915 | {'accuracy': 0.874} |
68
- | 0.0237 | 16.0 | 2000 | 0.7394 | {'accuracy': 0.882} |
69
- | 0.0237 | 17.0 | 2125 | 0.8335 | {'accuracy': 0.878} |
70
- | 0.0237 | 18.0 | 2250 | 1.0328 | {'accuracy': 0.875} |
71
- | 0.0237 | 19.0 | 2375 | 0.8622 | {'accuracy': 0.879} |
72
- | 0.0232 | 20.0 | 2500 | 0.8536 | {'accuracy': 0.872} |
73
- | 0.0232 | 21.0 | 2625 | 0.9345 | {'accuracy': 0.874} |
74
- | 0.0232 | 22.0 | 2750 | 0.9473 | {'accuracy': 0.876} |
75
- | 0.0232 | 23.0 | 2875 | 1.0162 | {'accuracy': 0.874} |
76
- | 0.0121 | 24.0 | 3000 | 0.9833 | {'accuracy': 0.868} |
77
- | 0.0121 | 25.0 | 3125 | 0.9889 | {'accuracy': 0.878} |
78
- | 0.0121 | 26.0 | 3250 | 0.9712 | {'accuracy': 0.874} |
79
- | 0.0121 | 27.0 | 3375 | 0.9586 | {'accuracy': 0.877} |
80
- | 0.0098 | 28.0 | 3500 | 0.9557 | {'accuracy': 0.875} |
81
- | 0.0098 | 29.0 | 3625 | 1.0105 | {'accuracy': 0.873} |
82
- | 0.0098 | 30.0 | 3750 | 0.9052 | {'accuracy': 0.869} |
83
- | 0.0098 | 31.0 | 3875 | 0.9571 | {'accuracy': 0.878} |
84
- | 0.0093 | 32.0 | 4000 | 1.0417 | {'accuracy': 0.871} |
85
- | 0.0093 | 33.0 | 4125 | 1.1209 | {'accuracy': 0.871} |
86
- | 0.0093 | 34.0 | 4250 | 1.1851 | {'accuracy': 0.869} |
87
- | 0.0093 | 35.0 | 4375 | 1.4009 | {'accuracy': 0.871} |
88
- | 0.0048 | 36.0 | 4500 | 1.1369 | {'accuracy': 0.879} |
89
- | 0.0048 | 37.0 | 4625 | 1.1375 | {'accuracy': 0.879} |
90
- | 0.0048 | 38.0 | 4750 | 1.1177 | {'accuracy': 0.877} |
91
- | 0.0048 | 39.0 | 4875 | 1.1163 | {'accuracy': 0.881} |
92
- | 0.0004 | 40.0 | 5000 | 1.1190 | {'accuracy': 0.874} |
93
- | 0.0004 | 41.0 | 5125 | 1.1133 | {'accuracy': 0.879} |
94
- | 0.0004 | 42.0 | 5250 | 1.1240 | {'accuracy': 0.878} |
95
- | 0.0004 | 43.0 | 5375 | 1.0499 | {'accuracy': 0.885} |
96
- | 0.0023 | 44.0 | 5500 | 1.0496 | {'accuracy': 0.884} |
97
- | 0.0023 | 45.0 | 5625 | 1.0538 | {'accuracy': 0.884} |
98
- | 0.0023 | 46.0 | 5750 | 1.0807 | {'accuracy': 0.879} |
99
- | 0.0023 | 47.0 | 5875 | 1.0642 | {'accuracy': 0.88} |
100
- | 0.0002 | 48.0 | 6000 | 1.0655 | {'accuracy': 0.879} |
101
- | 0.0002 | 49.0 | 6125 | 1.0755 | {'accuracy': 0.881} |
102
- | 0.0002 | 50.0 | 6250 | 1.0845 | {'accuracy': 0.884} |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
 
105
  ### Framework versions
106
 
107
  - PEFT 0.11.1
108
- - Transformers 4.42.3
109
  - Pytorch 2.3.1+cu121
110
  - Datasets 2.19.1
111
  - Tokenizers 0.19.1
 
1
+ ---
2
+ base_model: distilbert-base-uncased
3
+ library_name: peft
4
+ license: apache-2.0
5
+ metrics:
6
+ - accuracy
7
+ tags:
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: distilbert-base-uncased-lora-text-classification
11
+ results: []
12
+ ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
 
18
 
19
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 1.2966
22
+ - Accuracy: {'accuracy': 0.886}
23
 
24
  ## Model description
25
 
 
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
+ - num_epochs: 100
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:-------------------:|
53
+ | No log | 1.0 | 125 | 0.2972 | {'accuracy': 0.873} |
54
+ | No log | 2.0 | 250 | 0.4349 | {'accuracy': 0.857} |
55
+ | No log | 3.0 | 375 | 0.4850 | {'accuracy': 0.861} |
56
+ | 0.2757 | 4.0 | 500 | 0.4277 | {'accuracy': 0.865} |
57
+ | 0.2757 | 5.0 | 625 | 0.4342 | {'accuracy': 0.881} |
58
+ | 0.2757 | 6.0 | 750 | 0.4613 | {'accuracy': 0.88} |
59
+ | 0.2757 | 7.0 | 875 | 0.6101 | {'accuracy': 0.879} |
60
+ | 0.1047 | 8.0 | 1000 | 0.6068 | {'accuracy': 0.877} |
61
+ | 0.1047 | 9.0 | 1125 | 0.6253 | {'accuracy': 0.878} |
62
+ | 0.1047 | 10.0 | 1250 | 0.6737 | {'accuracy': 0.89} |
63
+ | 0.1047 | 11.0 | 1375 | 0.8528 | {'accuracy': 0.867} |
64
+ | 0.0462 | 12.0 | 1500 | 0.8829 | {'accuracy': 0.879} |
65
+ | 0.0462 | 13.0 | 1625 | 0.8560 | {'accuracy': 0.881} |
66
+ | 0.0462 | 14.0 | 1750 | 0.9111 | {'accuracy': 0.877} |
67
+ | 0.0462 | 15.0 | 1875 | 0.9331 | {'accuracy': 0.883} |
68
+ | 0.0329 | 16.0 | 2000 | 0.8129 | {'accuracy': 0.879} |
69
+ | 0.0329 | 17.0 | 2125 | 0.8663 | {'accuracy': 0.882} |
70
+ | 0.0329 | 18.0 | 2250 | 0.8163 | {'accuracy': 0.887} |
71
+ | 0.0329 | 19.0 | 2375 | 0.7679 | {'accuracy': 0.891} |
72
+ | 0.0188 | 20.0 | 2500 | 0.7408 | {'accuracy': 0.893} |
73
+ | 0.0188 | 21.0 | 2625 | 0.8557 | {'accuracy': 0.889} |
74
+ | 0.0188 | 22.0 | 2750 | 0.9201 | {'accuracy': 0.878} |
75
+ | 0.0188 | 23.0 | 2875 | 0.8839 | {'accuracy': 0.893} |
76
+ | 0.0078 | 24.0 | 3000 | 0.9388 | {'accuracy': 0.886} |
77
+ | 0.0078 | 25.0 | 3125 | 0.9004 | {'accuracy': 0.877} |
78
+ | 0.0078 | 26.0 | 3250 | 0.9489 | {'accuracy': 0.89} |
79
+ | 0.0078 | 27.0 | 3375 | 1.0055 | {'accuracy': 0.88} |
80
+ | 0.0241 | 28.0 | 3500 | 0.9758 | {'accuracy': 0.88} |
81
+ | 0.0241 | 29.0 | 3625 | 1.0809 | {'accuracy': 0.876} |
82
+ | 0.0241 | 30.0 | 3750 | 1.0976 | {'accuracy': 0.858} |
83
+ | 0.0241 | 31.0 | 3875 | 1.1300 | {'accuracy': 0.859} |
84
+ | 0.0293 | 32.0 | 4000 | 1.1039 | {'accuracy': 0.869} |
85
+ | 0.0293 | 33.0 | 4125 | 0.9788 | {'accuracy': 0.875} |
86
+ | 0.0293 | 34.0 | 4250 | 1.0639 | {'accuracy': 0.873} |
87
+ | 0.0293 | 35.0 | 4375 | 1.2398 | {'accuracy': 0.866} |
88
+ | 0.0088 | 36.0 | 4500 | 1.1332 | {'accuracy': 0.874} |
89
+ | 0.0088 | 37.0 | 4625 | 1.1145 | {'accuracy': 0.877} |
90
+ | 0.0088 | 38.0 | 4750 | 1.1481 | {'accuracy': 0.867} |
91
+ | 0.0088 | 39.0 | 4875 | 1.3712 | {'accuracy': 0.87} |
92
+ | 0.0054 | 40.0 | 5000 | 1.3314 | {'accuracy': 0.871} |
93
+ | 0.0054 | 41.0 | 5125 | 1.2189 | {'accuracy': 0.879} |
94
+ | 0.0054 | 42.0 | 5250 | 1.4673 | {'accuracy': 0.864} |
95
+ | 0.0054 | 43.0 | 5375 | 1.2771 | {'accuracy': 0.885} |
96
+ | 0.0097 | 44.0 | 5500 | 0.9926 | {'accuracy': 0.879} |
97
+ | 0.0097 | 45.0 | 5625 | 1.0428 | {'accuracy': 0.881} |
98
+ | 0.0097 | 46.0 | 5750 | 1.3764 | {'accuracy': 0.867} |
99
+ | 0.0097 | 47.0 | 5875 | 1.2730 | {'accuracy': 0.88} |
100
+ | 0.0076 | 48.0 | 6000 | 1.3435 | {'accuracy': 0.895} |
101
+ | 0.0076 | 49.0 | 6125 | 1.4281 | {'accuracy': 0.883} |
102
+ | 0.0076 | 50.0 | 6250 | 1.4440 | {'accuracy': 0.874} |
103
+ | 0.0076 | 51.0 | 6375 | 1.5093 | {'accuracy': 0.88} |
104
+ | 0.0113 | 52.0 | 6500 | 1.2309 | {'accuracy': 0.877} |
105
+ | 0.0113 | 53.0 | 6625 | 1.1447 | {'accuracy': 0.88} |
106
+ | 0.0113 | 54.0 | 6750 | 1.1743 | {'accuracy': 0.877} |
107
+ | 0.0113 | 55.0 | 6875 | 1.4742 | {'accuracy': 0.867} |
108
+ | 0.0179 | 56.0 | 7000 | 1.2592 | {'accuracy': 0.882} |
109
+ | 0.0179 | 57.0 | 7125 | 1.2337 | {'accuracy': 0.889} |
110
+ | 0.0179 | 58.0 | 7250 | 1.1486 | {'accuracy': 0.894} |
111
+ | 0.0179 | 59.0 | 7375 | 1.1452 | {'accuracy': 0.89} |
112
+ | 0.0059 | 60.0 | 7500 | 1.1572 | {'accuracy': 0.891} |
113
+ | 0.0059 | 61.0 | 7625 | 1.1582 | {'accuracy': 0.891} |
114
+ | 0.0059 | 62.0 | 7750 | 1.3938 | {'accuracy': 0.884} |
115
+ | 0.0059 | 63.0 | 7875 | 1.2767 | {'accuracy': 0.89} |
116
+ | 0.0006 | 64.0 | 8000 | 1.2217 | {'accuracy': 0.89} |
117
+ | 0.0006 | 65.0 | 8125 | 1.2232 | {'accuracy': 0.89} |
118
+ | 0.0006 | 66.0 | 8250 | 1.2689 | {'accuracy': 0.894} |
119
+ | 0.0006 | 67.0 | 8375 | 1.2529 | {'accuracy': 0.894} |
120
+ | 0.0 | 68.0 | 8500 | 1.2292 | {'accuracy': 0.894} |
121
+ | 0.0 | 69.0 | 8625 | 1.2053 | {'accuracy': 0.893} |
122
+ | 0.0 | 70.0 | 8750 | 1.2587 | {'accuracy': 0.891} |
123
+ | 0.0 | 71.0 | 8875 | 1.2803 | {'accuracy': 0.89} |
124
+ | 0.0005 | 72.0 | 9000 | 1.3449 | {'accuracy': 0.889} |
125
+ | 0.0005 | 73.0 | 9125 | 1.3193 | {'accuracy': 0.891} |
126
+ | 0.0005 | 74.0 | 9250 | 1.3032 | {'accuracy': 0.892} |
127
+ | 0.0005 | 75.0 | 9375 | 1.3586 | {'accuracy': 0.895} |
128
+ | 0.0006 | 76.0 | 9500 | 1.3457 | {'accuracy': 0.894} |
129
+ | 0.0006 | 77.0 | 9625 | 1.3742 | {'accuracy': 0.892} |
130
+ | 0.0006 | 78.0 | 9750 | 1.3986 | {'accuracy': 0.891} |
131
+ | 0.0006 | 79.0 | 9875 | 1.5180 | {'accuracy': 0.884} |
132
+ | 0.0022 | 80.0 | 10000 | 1.5658 | {'accuracy': 0.879} |
133
+ | 0.0022 | 81.0 | 10125 | 1.5500 | {'accuracy': 0.879} |
134
+ | 0.0022 | 82.0 | 10250 | 1.4174 | {'accuracy': 0.888} |
135
+ | 0.0022 | 83.0 | 10375 | 1.3601 | {'accuracy': 0.89} |
136
+ | 0.0023 | 84.0 | 10500 | 1.4022 | {'accuracy': 0.887} |
137
+ | 0.0023 | 85.0 | 10625 | 1.3639 | {'accuracy': 0.89} |
138
+ | 0.0023 | 86.0 | 10750 | 1.2567 | {'accuracy': 0.887} |
139
+ | 0.0023 | 87.0 | 10875 | 1.3608 | {'accuracy': 0.89} |
140
+ | 0.0043 | 88.0 | 11000 | 1.3487 | {'accuracy': 0.888} |
141
+ | 0.0043 | 89.0 | 11125 | 1.3392 | {'accuracy': 0.889} |
142
+ | 0.0043 | 90.0 | 11250 | 1.3368 | {'accuracy': 0.888} |
143
+ | 0.0043 | 91.0 | 11375 | 1.3246 | {'accuracy': 0.881} |
144
+ | 0.0002 | 92.0 | 11500 | 1.3173 | {'accuracy': 0.881} |
145
+ | 0.0002 | 93.0 | 11625 | 1.2988 | {'accuracy': 0.888} |
146
+ | 0.0002 | 94.0 | 11750 | 1.3090 | {'accuracy': 0.882} |
147
+ | 0.0002 | 95.0 | 11875 | 1.3269 | {'accuracy': 0.894} |
148
+ | 0.0006 | 96.0 | 12000 | 1.2966 | {'accuracy': 0.885} |
149
+ | 0.0006 | 97.0 | 12125 | 1.2965 | {'accuracy': 0.885} |
150
+ | 0.0006 | 98.0 | 12250 | 1.2966 | {'accuracy': 0.886} |
151
+ | 0.0006 | 99.0 | 12375 | 1.2965 | {'accuracy': 0.886} |
152
+ | 0.0 | 100.0 | 12500 | 1.2966 | {'accuracy': 0.886} |
153
 
154
 
155
  ### Framework versions
156
 
157
  - PEFT 0.11.1
158
+ - Transformers 4.43.1
159
  - Pytorch 2.3.1+cu121
160
  - Datasets 2.19.1
161
  - Tokenizers 0.19.1
adapter_config.json CHANGED
@@ -1,31 +1,31 @@
1
- {
2
- "alpha_pattern": {},
3
- "auto_mapping": null,
4
- "base_model_name_or_path": "distilbert-base-uncased",
5
- "bias": "none",
6
- "fan_in_fan_out": false,
7
- "inference_mode": true,
8
- "init_lora_weights": true,
9
- "layer_replication": null,
10
- "layers_pattern": null,
11
- "layers_to_transform": null,
12
- "loftq_config": {},
13
- "lora_alpha": 32,
14
- "lora_dropout": 0.01,
15
- "megatron_config": null,
16
- "megatron_core": "megatron.core",
17
- "modules_to_save": [
18
- "classifier",
19
- "score"
20
- ],
21
- "peft_type": "LORA",
22
- "r": 1024,
23
- "rank_pattern": {},
24
- "revision": null,
25
- "target_modules": [
26
- "q_lin"
27
- ],
28
- "task_type": "SEQ_CLS",
29
- "use_dora": false,
30
- "use_rslora": false
31
  }
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "distilbert-base-uncased",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.01,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "classifier",
19
+ "score"
20
+ ],
21
+ "peft_type": "LORA",
22
+ "r": 1024,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_lin"
27
+ ],
28
+ "task_type": "SEQ_CLS",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
  }
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1be07c69b61d4b8e9c4dcf727a1fdc663f293ded1f0ec91730474dea43d84e21
3
  size 40119480
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0245711dde517faeaa4f6114aa8c7adb04a46af934e8b1861981499c0ddd143
3
  size 40119480
special_tokens_map.json CHANGED
@@ -1,7 +1,7 @@
1
- {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
7
- }
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json CHANGED
@@ -1,56 +1,56 @@
1
- {
2
- "add_prefix_space": true,
3
- "added_tokens_decoder": {
4
- "0": {
5
- "content": "[PAD]",
6
- "lstrip": false,
7
- "normalized": false,
8
- "rstrip": false,
9
- "single_word": false,
10
- "special": true
11
- },
12
- "100": {
13
- "content": "[UNK]",
14
- "lstrip": false,
15
- "normalized": false,
16
- "rstrip": false,
17
- "single_word": false,
18
- "special": true
19
- },
20
- "101": {
21
- "content": "[CLS]",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false,
26
- "special": true
27
- },
28
- "102": {
29
- "content": "[SEP]",
30
- "lstrip": false,
31
- "normalized": false,
32
- "rstrip": false,
33
- "single_word": false,
34
- "special": true
35
- },
36
- "103": {
37
- "content": "[MASK]",
38
- "lstrip": false,
39
- "normalized": false,
40
- "rstrip": false,
41
- "single_word": false,
42
- "special": true
43
- }
44
- },
45
- "clean_up_tokenization_spaces": true,
46
- "cls_token": "[CLS]",
47
- "do_lower_case": true,
48
- "mask_token": "[MASK]",
49
- "model_max_length": 512,
50
- "pad_token": "[PAD]",
51
- "sep_token": "[SEP]",
52
- "strip_accents": null,
53
- "tokenize_chinese_chars": true,
54
- "tokenizer_class": "DistilBertTokenizer",
55
- "unk_token": "[UNK]"
56
- }
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "101": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "102": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "103": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48d608d87a4a289efccf3cc694efa37c422e7bdf9dc08320ccff5b567902df4c
3
- size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2edc551ea9bd01270ad14603c0b7d04fa67fc0f101312ab1672b9e2019b3d7e
3
+ size 5240