|
<div align="center"> |
|
|
|
# Apollo: An Exploration of Video Understanding in Large Multimodal Models |
|
|
|
<p align="center"> |
|
<img src="assets/icon.jpg" width="150" style="margin-bottom: 0.2;"/> |
|
<p> |
|
|
|
|
|
<a href="https://arxiv.org/abs/2412.10360" target="_blank"> |
|
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-Apollo-red?logo=arxiv&style=for-the-badge" height="25" /> |
|
</a> |
|
<a href="https://apollo-lmms.github.io" target="_blank"> |
|
<img alt="Website" src="https://img.shields.io/badge/๐_Website-apollo--lmms.github.io-blue.svg?style=for-the-badge" height="25" /> |
|
</a> |
|
<br> |
|
<a href="https://huggingface.co/Apollo-LMMs" target="_blank"> |
|
<img alt="HF Model: Apollo-LMMs" src="https://img.shields.io/badge/%F0%9F%A4%97%20Model-Apollo--LMMs-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" /> |
|
</a> |
|
<a href="https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B" target="_blank"> |
|
<img alt="HF Demo: Apollo-3B" src="https://img.shields.io/badge/%F0%9F%A4%97%20Demo-Apollo--3B-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" /> |
|
</a> |
|
<a href="https://huggingface.co/spaces/Apollo-LMMs/ApolloBench" target="_blank"> |
|
<img alt="HF Leaderboard: ApolloBench" src="https://img.shields.io/badge/%F0%9F%A4%97%20Leaderboard-ApolloBench-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" /> |
|
</a> |
|
|
|
</div> |
|
|
|
|
|
|
|
Apollo is a family of Large Multimodal Models (LMMs) designed to address a broad spectrum of video-language tasks, including long-form video comprehension, temporal reasoning, and multi-turn video conversations. Apollo achieves state-of-the-art performance across several benchmarks and scales efficiently from billions to tens of billions of parameters. |
|
|
|
## Release |
|
- **[Dec 13, 2024]** Apollo released! |
|
- **[Coming soon..]** Training code will be released upon internal approval. |
|
|
|
## Quick Start |
|
|
|
### Installation |
|
|
|
```bash |
|
pip install -e . |
|
pip install flash-attn --no-build-isolation |
|
``` |
|
|
|
### Inference Example |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from apollo.mm_utils import ( |
|
KeywordsStoppingCriteria, |
|
tokenizer_mm_token, |
|
ApolloMMLoader |
|
) |
|
from apollo.conversations import conv_templates, SeparatorStyle |
|
from apollo.constants import X_TOKEN, X_TOKEN_INDEX |
|
from huggingface_hub import snapshot_download |
|
|
|
# Parameters |
|
version = "qwen_2" |
|
model_url = "Apollo-LMMs/Apollo-3B-t32" |
|
model_path = snapshot_download(model_url, repo_type="model") |
|
|
|
video_path = "/your/local/path/video.mp4" |
|
question = "Describe this video in detail" |
|
temperature = 0.4 |
|
top_p = 0.7 |
|
max_output_tokens = 256 |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
attn_implementation = "sdpa" if torch.__version__ > "2.1.2" else "eager" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
attn_implementation=attn_implementation, |
|
).to(device=device, dtype=torch.bfloat16) |
|
|
|
tokenizer = model.tokenizer |
|
vision_processors = model.vision_tower.vision_processor |
|
config = model.config |
|
max_length = config.llm_cfg['model_max_length'] |
|
num_repeat_token = config.mm_connector_cfg['num_output_tokens'] |
|
mm_use_im_start_end = config.use_mm_start_end |
|
|
|
frames_per_clip = 4 |
|
clip_duration = getattr(config, 'clip_duration') |
|
|
|
mm_processor = ApolloMMLoader( |
|
vision_processors, |
|
clip_duration, |
|
frames_per_clip, |
|
clip_sampling_ratio=0.65, |
|
model_max_length=config.model_max_length, |
|
device=device, |
|
num_repeat_token=num_repeat_token |
|
) |
|
|
|
model.eval() |
|
|
|
mm_data, replace_string = mm_processor.load_video(video_path) |
|
message = replace_string + "\n\n" + question |
|
|
|
conv = conv_templates[version].copy() |
|
conv.append_message(conv.roles[0], message) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device) |
|
|
|
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
vision_input=[mm_data], |
|
data_types=['video'], |
|
do_sample=(temperature > 0), |
|
temperature=temperature, |
|
max_new_tokens=max_output_tokens, |
|
top_p=top_p, |
|
use_cache=True, |
|
num_beams=1, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() |
|
print(pred) |
|
``` |
|
|
|
### PEFT (Parameter-Efficient Fine-Tuning) |
|
- **(Coming soon..)** We will provide examples and documentation on how to apply low-rank adaptation (LoRA) and other parameter-efficient fine-tuning techniques to Apollo. |
|
|
|
|
|
## Citation |
|
|
|
If you find Apollo useful in your research, please cite: |
|
```bibtex |
|
@article{apollo, |
|
title={Apollo: An Exploration of Video Understanding in Large Multimodal Models}, |
|
author={Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia}, |
|
journal={arXiv preprint arXiv:2412.10360}, |
|
year={2024} |
|
} |
|
``` |
|
|