manysuch-cases
commited on
Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
# Apollo: An Exploration of Video Understanding in Large Multimodal Models
|
4 |
+
|
5 |
+
<p align="center">
|
6 |
+
<img src="assets/icon.jpg" width="150" style="margin-bottom: 0.2;"/>
|
7 |
+
<p>
|
8 |
+
|
9 |
+
|
10 |
+
<a href="https://arxiv.org/abs/2412.10360" target="_blank">
|
11 |
+
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-Apollo-red?logo=arxiv&style=for-the-badge" height="25" />
|
12 |
+
</a>
|
13 |
+
<a href="https://apollo-lmms.github.io" target="_blank">
|
14 |
+
<img alt="Website" src="https://img.shields.io/badge/🌎_Website-apollo--lmms.github.io-blue.svg?style=for-the-badge" height="25" />
|
15 |
+
</a>
|
16 |
+
<br>
|
17 |
+
<a href="https://huggingface.co/Apollo-LMMs" target="_blank">
|
18 |
+
<img alt="HF Model: Apollo-LMMs" src="https://img.shields.io/badge/%F0%9F%A4%97%20Model-Apollo--LMMs-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
19 |
+
</a>
|
20 |
+
<a href="https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B" target="_blank">
|
21 |
+
<img alt="HF Demo: Apollo-3B" src="https://img.shields.io/badge/%F0%9F%A4%97%20Demo-Apollo--3B-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
22 |
+
</a>
|
23 |
+
<a href="https://huggingface.co/spaces/Apollo-LMMs/ApolloBench" target="_blank">
|
24 |
+
<img alt="HF Leaderboard: ApolloBench" src="https://img.shields.io/badge/%F0%9F%A4%97%20Leaderboard-ApolloBench-ffc107?color=ffc107&logoColor=white&style=for-the-badge" height="25" />
|
25 |
+
</a>
|
26 |
+
|
27 |
+
</div>
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
Apollo is a family of Large Multimodal Models (LMMs) designed to address a broad spectrum of video-language tasks, including long-form video comprehension, temporal reasoning, and multi-turn video conversations. Apollo achieves state-of-the-art performance across several benchmarks and scales efficiently from billions to tens of billions of parameters.
|
32 |
+
|
33 |
+
## Release
|
34 |
+
- **[Dec 13, 2024]** Apollo released!
|
35 |
+
- **[Coming soon..]** Training code will be released upon internal approval.
|
36 |
+
|
37 |
+
## Quick Start
|
38 |
+
|
39 |
+
### Installation
|
40 |
+
|
41 |
+
```bash
|
42 |
+
pip install -e .
|
43 |
+
pip install flash-attn --no-build-isolation
|
44 |
+
```
|
45 |
+
|
46 |
+
### Inference Example
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from transformers import AutoModelForCausalLM
|
51 |
+
from apollo.mm_utils import (
|
52 |
+
KeywordsStoppingCriteria,
|
53 |
+
tokenizer_mm_token,
|
54 |
+
ApolloMMLoader
|
55 |
+
)
|
56 |
+
from apollo.conversations import conv_templates, SeparatorStyle
|
57 |
+
from apollo.constants import X_TOKEN, X_TOKEN_INDEX
|
58 |
+
from huggingface_hub import snapshot_download
|
59 |
+
|
60 |
+
# Parameters
|
61 |
+
version = "qwen_2"
|
62 |
+
model_url = "Apollo-LMMs/Apollo-3B-t32"
|
63 |
+
model_path = snapshot_download(model_url, repo_type="model")
|
64 |
+
|
65 |
+
video_path = "/your/local/path/video.mp4"
|
66 |
+
question = "Describe this video in detail"
|
67 |
+
temperature = 0.4
|
68 |
+
top_p = 0.7
|
69 |
+
max_output_tokens = 256
|
70 |
+
|
71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
72 |
+
attn_implementation = "sdpa" if torch.__version__ > "2.1.2" else "eager"
|
73 |
+
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
75 |
+
model_path,
|
76 |
+
trust_remote_code=True,
|
77 |
+
low_cpu_mem_usage=True,
|
78 |
+
attn_implementation=attn_implementation,
|
79 |
+
).to(device=device, dtype=torch.bfloat16)
|
80 |
+
|
81 |
+
tokenizer = model.tokenizer
|
82 |
+
vision_processors = model.vision_tower.vision_processor
|
83 |
+
config = model.config
|
84 |
+
max_length = config.llm_cfg['model_max_length']
|
85 |
+
num_repeat_token = config.mm_connector_cfg['num_output_tokens']
|
86 |
+
mm_use_im_start_end = config.use_mm_start_end
|
87 |
+
|
88 |
+
frames_per_clip = 4
|
89 |
+
clip_duration = getattr(config, 'clip_duration')
|
90 |
+
|
91 |
+
mm_processor = ApolloMMLoader(
|
92 |
+
vision_processors,
|
93 |
+
clip_duration,
|
94 |
+
frames_per_clip,
|
95 |
+
clip_sampling_ratio=0.65,
|
96 |
+
model_max_length=config.model_max_length,
|
97 |
+
device=device,
|
98 |
+
num_repeat_token=num_repeat_token
|
99 |
+
)
|
100 |
+
|
101 |
+
model.eval()
|
102 |
+
|
103 |
+
mm_data, replace_string = mm_processor.load_video(video_path)
|
104 |
+
message = replace_string + "\n\n" + question
|
105 |
+
|
106 |
+
conv = conv_templates[version].copy()
|
107 |
+
conv.append_message(conv.roles[0], message)
|
108 |
+
conv.append_message(conv.roles[1], None)
|
109 |
+
prompt = conv.get_prompt()
|
110 |
+
|
111 |
+
input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device)
|
112 |
+
|
113 |
+
pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
|
114 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
115 |
+
keywords = [stop_str]
|
116 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
117 |
+
|
118 |
+
with torch.inference_mode():
|
119 |
+
output_ids = model.generate(
|
120 |
+
input_ids,
|
121 |
+
vision_input=[mm_data],
|
122 |
+
data_types=['video'],
|
123 |
+
do_sample=(temperature > 0),
|
124 |
+
temperature=temperature,
|
125 |
+
max_new_tokens=max_output_tokens,
|
126 |
+
top_p=top_p,
|
127 |
+
use_cache=True,
|
128 |
+
num_beams=1,
|
129 |
+
stopping_criteria=[stopping_criteria]
|
130 |
+
)
|
131 |
+
|
132 |
+
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
133 |
+
print(pred)
|
134 |
+
```
|
135 |
+
|
136 |
+
### PEFT (Parameter-Efficient Fine-Tuning)
|
137 |
+
- **(Coming soon..)** We will provide examples and documentation on how to apply low-rank adaptation (LoRA) and other parameter-efficient fine-tuning techniques to Apollo.
|
138 |
+
|
139 |
+
|
140 |
+
## Citation
|
141 |
+
|
142 |
+
If you find Apollo useful in your research, please cite:
|
143 |
+
```bibtex
|
144 |
+
@article{apollo,
|
145 |
+
title={Apollo: An Exploration of Video Understanding in Large Multimodal Models},
|
146 |
+
author={Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia},
|
147 |
+
journal={arXiv preprint arXiv:2412.10360},
|
148 |
+
year={2024}
|
149 |
+
}
|
150 |
+
```
|