# Apollo: An Exploration of Video Understanding in Large Multimodal Models

arXiv Website
HF Model: Apollo-LMMs HF Demo: Apollo-3B HF Leaderboard: ApolloBench

Apollo is a family of Large Multimodal Models (LMMs) designed to address a broad spectrum of video-language tasks, including long-form video comprehension, temporal reasoning, and multi-turn video conversations. Apollo achieves state-of-the-art performance across several benchmarks and scales efficiently from billions to tens of billions of parameters. ## Release - **[Dec 13, 2024]** Apollo released! - **[Coming soon..]** Training code will be released upon internal approval. ## Quick Start ### Installation ```bash pip install -e . pip install flash-attn --no-build-isolation ``` ### Inference Example ```python import torch from transformers import AutoModelForCausalLM from apollo.mm_utils import ( KeywordsStoppingCriteria, tokenizer_mm_token, ApolloMMLoader ) from apollo.conversations import conv_templates, SeparatorStyle from apollo.constants import X_TOKEN, X_TOKEN_INDEX from huggingface_hub import snapshot_download # Parameters version = "qwen_2" model_url = "Apollo-LMMs/Apollo-3B-t32" model_path = snapshot_download(model_url, repo_type="model") video_path = "/your/local/path/video.mp4" question = "Describe this video in detail" temperature = 0.4 top_p = 0.7 max_output_tokens = 256 device = "cuda" if torch.cuda.is_available() else "cpu" attn_implementation = "sdpa" if torch.__version__ > "2.1.2" else "eager" model = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, low_cpu_mem_usage=True, attn_implementation=attn_implementation, ).to(device=device, dtype=torch.bfloat16) tokenizer = model.tokenizer vision_processors = model.vision_tower.vision_processor config = model.config max_length = config.llm_cfg['model_max_length'] num_repeat_token = config.mm_connector_cfg['num_output_tokens'] mm_use_im_start_end = config.use_mm_start_end frames_per_clip = 4 clip_duration = getattr(config, 'clip_duration') mm_processor = ApolloMMLoader( vision_processors, clip_duration, frames_per_clip, clip_sampling_ratio=0.65, model_max_length=config.model_max_length, device=device, num_repeat_token=num_repeat_token ) model.eval() mm_data, replace_string = mm_processor.load_video(video_path) message = replace_string + "\n\n" + question conv = conv_templates[version].copy() conv.append_message(conv.roles[0], message) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_mm_token(prompt, tokenizer, return_tensors="pt").unsqueeze(0).to(device) pad_token_ids = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, vision_input=[mm_data], data_types=['video'], do_sample=(temperature > 0), temperature=temperature, max_new_tokens=max_output_tokens, top_p=top_p, use_cache=True, num_beams=1, stopping_criteria=[stopping_criteria] ) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(pred) ``` ### PEFT (Parameter-Efficient Fine-Tuning) - **(Coming soon..)** We will provide examples and documentation on how to apply low-rank adaptation (LoRA) and other parameter-efficient fine-tuning techniques to Apollo. ## Citation If you find Apollo useful in your research, please cite: ```bibtex @article{apollo, title={Apollo: An Exploration of Video Understanding in Large Multimodal Models}, author={Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch, Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, Serena Yeung-Levy, and Xide Xia}, journal={arXiv preprint arXiv:2412.10360}, year={2024} } ```