|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: intfloat/multilingual-e5-base |
|
tags: |
|
- generated_from_trainer |
|
- sentence-transformers |
|
- text-classification |
|
- feature-extraction |
|
- generated_from_trainer |
|
- legal |
|
- taxation |
|
- fiscalité |
|
- tax |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: lemone-router |
|
results: [] |
|
language: |
|
- fr |
|
pipeline_tag: text-classification |
|
datasets: |
|
- louisbrulenaudet/code-impots |
|
- louisbrulenaudet/code-impots-annexe-iv |
|
- louisbrulenaudet/code-impots-annexe-iii |
|
- louisbrulenaudet/code-impots-annexe-i |
|
- louisbrulenaudet/code-impots-annexe-ii |
|
- louisbrulenaudet/livre-procedures-fiscales |
|
- louisbrulenaudet/bofip |
|
--- |
|
|
|
<img src="assets/thumbnail.webp"> |
|
|
|
# Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation |
|
|
|
This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4096 |
|
- Accuracy: 0.9265 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.099463734610582e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 23 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.5371 | 1.0 | 2809 | 0.4147 | 0.8680 | |
|
| 0.3154 | 2.0 | 5618 | 0.3470 | 0.8914 | |
|
| 0.2241 | 3.0 | 8427 | 0.3345 | 0.9147 | |
|
| 0.1273 | 4.0 | 11236 | 0.3788 | 0.9187 | |
|
| 0.0525 | 5.0 | 14045 | 0.4096 | 0.9265 | |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA H100 NVL |
|
- **CPU Model**: AMD EPYC 9V84 96-Core Processor |
|
- **RAM Size**: 314.68 GB |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.1 |
|
|
|
## Citation |
|
If you use this code in your research, please use the following BibTeX entry. |
|
|
|
```BibTeX |
|
@misc{louisbrulenaudet2024, |
|
author = {Louis Brulé Naudet}, |
|
title = {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation}, |
|
year = {2024} |
|
howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-embed-pro}}, |
|
} |
|
``` |
|
|
|
## Feedback |
|
|
|
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |