File size: 2,727 Bytes
5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 5b04aaf 539ef01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
library_name: transformers
license: apache-2.0
base_model: intfloat/multilingual-e5-base
tags:
- generated_from_trainer
- sentence-transformers
- text-classification
- feature-extraction
- generated_from_trainer
- legal
- taxation
- fiscalité
- tax
metrics:
- accuracy
model-index:
- name: lemone-router
results: []
language:
- fr
pipeline_tag: text-classification
datasets:
- louisbrulenaudet/code-impots
- louisbrulenaudet/code-impots-annexe-iv
- louisbrulenaudet/code-impots-annexe-iii
- louisbrulenaudet/code-impots-annexe-i
- louisbrulenaudet/code-impots-annexe-ii
- louisbrulenaudet/livre-procedures-fiscales
- louisbrulenaudet/bofip
---
<img src="assets/thumbnail.webp">
# Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation
This model is a fine-tuned version of [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base).
It achieves the following results on the evaluation set:
- Loss: 0.4096
- Accuracy: 0.9265
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.099463734610582e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 23
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5371 | 1.0 | 2809 | 0.4147 | 0.8680 |
| 0.3154 | 2.0 | 5618 | 0.3470 | 0.8914 |
| 0.2241 | 3.0 | 8427 | 0.3345 | 0.9147 |
| 0.1273 | 4.0 | 11236 | 0.3788 | 0.9187 |
| 0.0525 | 5.0 | 14045 | 0.4096 | 0.9265 |
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA H100 NVL
- **CPU Model**: AMD EPYC 9V84 96-Core Processor
- **RAM Size**: 314.68 GB
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
## Citation
If you use this code in your research, please use the following BibTeX entry.
```BibTeX
@misc{louisbrulenaudet2024,
author = {Louis Brulé Naudet},
title = {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
year = {2024}
howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-embed-pro}},
}
```
## Feedback
If you have any feedback, please reach out at [[email protected]](mailto:[email protected]). |