lemone-router-m / README.md
louisbrulenaudet's picture
Update README.md
539ef01 verified
|
raw
history blame
2.73 kB
metadata
library_name: transformers
license: apache-2.0
base_model: intfloat/multilingual-e5-base
tags:
  - generated_from_trainer
  - sentence-transformers
  - text-classification
  - feature-extraction
  - generated_from_trainer
  - legal
  - taxation
  - fiscalité
  - tax
metrics:
  - accuracy
model-index:
  - name: lemone-router
    results: []
language:
  - fr
pipeline_tag: text-classification
datasets:
  - louisbrulenaudet/code-impots
  - louisbrulenaudet/code-impots-annexe-iv
  - louisbrulenaudet/code-impots-annexe-iii
  - louisbrulenaudet/code-impots-annexe-i
  - louisbrulenaudet/code-impots-annexe-ii
  - louisbrulenaudet/livre-procedures-fiscales
  - louisbrulenaudet/bofip

Lemone-Router: A Series of Fine-Tuned Classification Models for French Taxation

This model is a fine-tuned version of intfloat/multilingual-e5-base. It achieves the following results on the evaluation set:

  • Loss: 0.4096
  • Accuracy: 0.9265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.099463734610582e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 23
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5371 1.0 2809 0.4147 0.8680
0.3154 2.0 5618 0.3470 0.8914
0.2241 3.0 8427 0.3345 0.9147
0.1273 4.0 11236 0.3788 0.9187
0.0525 5.0 14045 0.4096 0.9265

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA H100 NVL
  • CPU Model: AMD EPYC 9V84 96-Core Processor
  • RAM Size: 314.68 GB

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1

Citation

If you use this code in your research, please use the following BibTeX entry.

@misc{louisbrulenaudet2024,
  author =       {Louis Brulé Naudet},
  title =        {Lemone-Embed: A Series of Fine-Tuned Embedding Models for French Taxation},
  year =         {2024}
  howpublished = {\url{https://huggingface.co/datasets/louisbrulenaudet/lemone-embed-pro}},
}

Feedback

If you have any feedback, please reach out at [email protected].